欢迎访问《高校地质学报》官方网站,今天是
分享到:

高校地质学报 ›› 2026, Vol. 32 ›› Issue (01): 76-93.DOI: 10.16108/j.issn1006-7493.2025018

• • 上一篇    下一篇

俯冲驱动上覆岩石圈变形的物理模拟研究

李 睿1,李一泉1*,毛宇琼1,陈莹莹1,贾 东2   

  1. 1. 南京大学 地理与海洋科学学院,南京 210023;
    2. 南京大学 地球科学与工程学院,南京 210023
  • 出版日期:2026-02-14 发布日期:2026-02-14

Physical Modeling Study of Subduction-driven Deformation in the Overriding Lithosphere

LI Rui1,LI Yiquan1*,MAO Yuqiong1,CHEN Yingying1,JIA Dong2   

  1. 1. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;
    2. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
  • Online:2026-02-14 Published:2026-02-14

摘要: 俯冲带作为板块构造的核心作用区域,其动力学过程对大陆岩石圈的构造运动和地表过程具有深远影响。文章系统分析了俯冲砂箱物理模拟实验方法基本原理和主要研究进展,总结对比了对应俯冲动力学过程及其对大陆岩石圈构造与地貌的影响。该研究发现,俯冲板片的几何运动学特征、地幔流模式与岩石圈构造地貌三者具有耦合作用:俯冲板片回撤造成大范围拉伸,板片翻卷形成地表隆升,板片堆叠发生地形的周期性演变,其中俯冲板片与软流圈地幔粘度比是俯冲样式(回撤型、翻卷型、堆叠型)的主控因素;俯冲板片运动会引起极向和环向地幔流,其产生的拖拽力影响地表变形,主动地幔流则通过方向和速度影响应变分布。俯冲的本质是一个热—力协同过程,岩石圈流变结构及耦合程度是对热—力过程的直接反馈,由此塑造了俯冲带区域多样的地貌形态。此外,文章还提出俯冲砂箱物理模拟实验具有局限性,未来需结合超重力离心技术、多场耦合监测及多学科交叉,深化俯冲带三维动态演化与地表地貌响应的定量关联研究,为完善板块构造理论提供实验支撑。

关键词: 俯冲带, 物理模拟, 大陆岩石圈, 构造运动, 动力学过程

Abstract: As the core region of plate tectonic theory, subduction zones exert profound influences on the tectonic movements
of the continental lithosphere and surface processes through their dynamic behaviors. This study systematically analyzes the methodology of sandbox physical simulation experiments for subduction and summarizes the dynamics of subduction processes and their driving mechanisms on the tectono-geomorphic evolution of the continental lithosphere. The results reveal a coupled interaction among the geometric-kinematic induces large-scale extension, slab rollover generates surface uplift, and slab stacking leads to periodic topographic evolution. The viscosity ratio between subducting slabs and asthenospheric mantle (ηSP/ηUM) is identified as the primary factor controlling subduction styles (rollback, rollover, and stacking). Subduction-driven slab motions trigger polar and toroidal mantle flows, whose drag forces influence surface deformation, while active mantle flows regulate strain distribution through their direction and velocity. Subduction is inherently a thermo-mechanical coupling process, with the rheological structure and coupling degree of the lithosphere directly reflecting thermoo-mechanical feedback, thereby shaping diverse geomorphic features in subduction zones. Additionally, this paper highlights the limitations of sandbox physical simulations and proposes future research directions integrating hypergravity centrifugation technology, multi-field coupled monitoring, and interdisciplinary approaches to quantitatively investigate the three-dimensional dynamic evolution of subduction zones and their surface geomorphic responses. These advancements will provide experimental support for refining plate tectonic theory.

Key words: subduction zone, analogue modeling, continental lithosphere, tectonic movement, dynamic processes

中图分类号: