欢迎访问《高校地质学报》官方网站,今天是
分享到:

J4

• 文章目录 • 上一篇    下一篇

江西相山铀矿田成矿物质来源的Nd、Sr、Rb同位素证据

范洪海, 凌洪飞, 王德滋, 沈渭洲, 刘昌实, 姜耀辉   

  1. 南京大学内生金属矿床成矿机制研究国家重点实验室及地球科学系,江苏南京210093
  • 收稿日期:2001-06-20 修回日期:2001-06-20 出版日期:2001-06-20 发布日期:2001-06-20

Ore-Forming Material Sources for Xiangshan Uranium 0re-Field in Jiangxi Province: Evidence from Nd-Sr-Pb Isotopes

FAN Hong-hai, LING Hong-fei, WANG De-zi, SHEN Wei-zhou,LIU Chang-shi, JIANG Yao-hui   

  1. Department of Earth Sciences and State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing 210093, China
  • Received:2001-06-20 Revised:2001-06-20 Online:2001-06-20 Published:2001-06-20

摘要: 对相山大型火山岩型铀矿田中邹家山和沙洲铀矿床及其赋矿围岩(碎斑熔岩及次花岗闪长斑岩)进行了Nd、Sr、Pb同位素研究。结果表明:成矿期萤石的εNd(t)值(-6.7~-8.3)和初始^87Sr/^86Sr比值(0.7145-0.7207)与赋矿围岩的εNd(t) 值(-6.2~-9.4)和初始^87Sr/^86Sr比值(0.7121-0.7192)相似。在εNd(t)-tl图上,成矿期萤石数据点的投影域与赋矿围岩的基本吻合,均落在相山元古宙基底演化域范围内。成矿期黄铁矿的铅组成在^206Rb/^204Pb-^207Pb/^204Pb关系图上呈线性分布,而火山岩的铅同位素组成位于此相关线低值一端。利用异常铅线的斜率及成矿年龄计算出富铀体质体的形成年龄为144Ma,这与赋矿围岩的成岩年龄(135-140Ma)接近。因此,相山铀矿田成矿物质主要来自富铀的火山-侵入杂岩,而火山-侵入杂岩则是由类似于地表出露的元古宙基底变质岩部分熔融形成的。由引可见,相山铀矿田的成矿物质主要来源于地壳。

Abstract: The Xiangshan volcanic rock related uranium ore-field is the 1argest uranium ore-field in China The Zoujiashan uranium deposit(fluorite-hyromica-uraninite association)and the Shazhou uranium deposit ( alkali feldspar alteration-hemitite-uraninite association) are the two representatives of the ore-field This paper presents Nd,Sr and Pb isotope compositions of these two uranium deposits and their wall rocks-the Xiangshan volcanic rocks εNd(t)values(-6.7~ -8.3)and initial 87Sr/86Sr ratios(0.7145~0.7207)of fluorite formed by the ore-forming hydrothermal fluid are similar to those of the wall rocks(εNd(t)=-6.2~-9.4,initial 87Sr/86Sr Sr=0.7121~O.7192). In the εNd(t) vs .t diagram,the plot area of data points for fluorite of ore-forming stage is generally identical with that of the host rocks. Both of them fall within the evolution domain of Proterosoic basement in Xiangshan area Pyrites from the ores have a linear correlation between 206Pb/204Pb and 207Pb/204Pb, while the wall rocks plot at the 1owe/value end of this corelation 1ine. From this 1ine a reference age of 144 Ma can be obtained, which is consistent with the age of the volcanic rocks(135~ 140Ma) This Nd-Sr-Pb isotope evidence suggests that the ore forming materials were derived mainly from the Xiangshan volcanic rocks The volcanic rocks were derived mainly from the crust which was similar to the exposed basement. Therefore,the main ore-forming materials were derived ultimately from the crust