欢迎访问《高校地质学报》官方网站,今天是
分享到:

J4 ›› 2014, Vol. 20 ›› Issue (1): 151-.

• 能源地质学 • 上一篇    下一篇

页岩气储层孔隙系统表征方法研究进展

焦 堃,姚素平,吴 浩,李苗春,汤中一   

  • 出版日期:2014-03-20 发布日期:2014-04-19

Advances in Characterization of Pore System of Gas Shales

JIAO Kun, YAO Suping, WU Hao, LI Miaochun, TANG Zhongyi   

  • Online:2014-03-20 Published:2014-04-19

摘要: 页岩气是以游离、吸附和溶解状态赋存于暗色泥页岩中的天然气,页岩的孔隙特征是决定页岩储层含气性的关键因 素。页岩孔隙结构复杂,一般以纳米孔隙占优势,用常规储层孔隙的表征方法难以解释美国的高产页岩气系统。因此,页 岩纳米孔隙的表征成为制约页岩气资源评价的关键因素。在综述目前国际上对页岩气储层孔隙表征方法的基础上,对比分 析其各自的适用范围和应用前景。页岩储层孔隙的主要表征方法有3种:(1)以微区分析为主的图像分析技术;(2)以压 汞法和气体等温吸附为主的流体注入技术;(3)以核磁共振、中子小角散射 计算机断层成像技术为代表的非流体注入技术。 图像分析能够直观、方便、快捷地获取孔隙形态等方面的特征;流体注入法在表征微孔隙的孔径分布、比表面积等方面具 有独到优势;非流体注入技术由于其原位、无损分析及粒子高穿透力的特点,使研究多种地质条件下的孔隙特性成为可能。 在目前的技术条件下,应明确各种表征技术的优势与限制,根据实际情况合理建立孔隙研究流程,综合利用多种技术手段 能在不同的尺度下有效表征页岩气储层孔隙。

关键词: 页岩气, 孔隙结构, 纳米级孔隙, 表征方法

Abstract: Shale gas is the free, adsorbed and dissolved gas accumulated in dark shale beds. The nature of pores is a key factor to decide gas storing of shale gas reservoir. The structure of gas shales pores is complex, and the pore diameters are mainly in nano-scale. The methods used in conventional gas system study cannot explain high production of shale gas systems in USA. The characterization of nanopores in gas shales plays a key role in shale gas system evaluation. The studies of nanopores in gas shales are reviewed and compared with each other. There are three kinds of shale gas system characterization: (1) Image analysis is based on a stereological analysis, using various types of microscopes such as scanning electron microscopes (SEM), transmission electron microscopes (TEM), scanning tunneling microscope (STM) and atomic force microscopes (AFM); (2) Intrusive methods are based on gas adsorption, mercury porosimetry, and calorimetric methods; (3) Nonintrusive methods are based on radiation scattering, wave propagation, positron lifetime spectroscopy, etc. Image analysis can obtain the morphologic information directly, rapidly and conveniently. Intrusive methods have advantages in characterization of fractal features of pore system. Because of in-situ, non- invasive analysis and high penetrability of neutron and X-ray, nonintrusive methods can simulate the pore system evolution under multi-geological settings. As each method has its own advantages, multi-scale detection using multi-technology is recommended in shale gas pore system characterization.

Key words: shale gas, pore structure, nanopore, characterization