欢迎访问《高校地质学报》官方网站,今天是
分享到:

J4 ›› 2015, Vol. 21 ›› Issue (3): 365-.

• 矿物科学与工程 专栏(一) •    下一篇

古盐度对塔北隆起泥岩中粘土矿物组合和绿泥石成分的影响

赵 明*,季峻峰,陈小明,蔡元峰,吴昌志,陈永权,武 兵   

  • 出版日期:2015-09-20 发布日期:2015-10-20

EffectsofPaleosalinityonClayMineralAssemblagesandChlorite CompositioninMudstoneofTabeiUplift,Xinjiang,China

ZHAOMing*,JIJunfeng,CHENXiaoming,CAIYuanfeng,WUChangzhi,CHENYongquan,WUBing   

  • Online:2015-09-20 Published:2015-10-20

摘要:

:粘土矿物组合和绿泥石成分常被用来讨论盆地沉积物的成岩作用和埋藏古温度。许多沉积盆地的研究结果显示,泥 岩和页岩中的粘土矿物组合和绿泥石的成分与埋藏深度/温度有关。但也见有例外的现象存在。文中主要探讨了新疆塔北隆 起泥岩中的粘土矿物组合和绿泥石成分的特征,以及与盆地古盐度的关系。研究结果表明:(1)在塔北隆起泥岩中,埋藏 深度2777.37~4604.41m,地层单位为J1-N2的粘土矿物组合为I+Chl和I+Chl+Ka; 埋藏深度5071.52~5299.37m,地层单位为 T1的粘土矿物组合为R0I/S+I+Chl和R0I/S+Chl。(2)研究区的成岩绿泥石为Ⅱb型铁镁绿泥石,其成分特征主要表现为: ①配位八面体中阳离子的占位数为11.532(总平均值);②ⅥAl含量明显大于ⅣAl含量;③(Fe+Mg)为4.016(总平均值);④ Si/Al比值>1。(3)根据研究区盐类矿物的分布范围以及古盐度的数据,讨论了古盐度对该区粘土矿物组合和绿泥石成分的 影响,指出古盐度是影响本区粘土矿物组合和绿泥石成分变化的主要因素。用古盐度解释了<5000m深度的粘土矿物组合 中不含无序伊/蒙混层(R0I/S)矿物,而>5000m深度粘土矿物组合中含有无序伊/蒙混层(R0I/S)矿物的异常现象。揭示了 在一定的深度范围(2777.37~4405.27m),一定的古盐度条件下(Sr/Ba比值≥0.4,并有盐类矿物出现),绿泥石成分受到 古盐度的制约,并且随着古盐度的增高,绿泥石成分中的Al、ⅣAl、Na、Na2O、Al/Si随之增高,而Si/Al则随之降低。由 绿泥石成分温度计获得的温度值也伴随着古盐度的增高而增高。因此,由绿泥石成分温度计所计算的温度不能代表本区实 际埋藏的古温度。(4)研究区内绿泥石成分中的SiO2和FeO与母岩的对应成分之间有一定的相关性,其SiO2绿泥石与SiO2岩石、 FeO绿泥石与FeO岩石呈负相关的线性关系,并且这种关系在古盐度的干扰下也未受到影响。

关键词: 新疆塔北隆起, 粘土矿物组合, 绿泥石成分, 古盐度, 岩石化学成分

Abstract:

 Clay mineral assemblages and chlorite composition are often analyzed to study diagenesis of sediments and burial paleotemperature in basins. A number of previous studies show that clay mineral assemblages and chemical compositions of chlorites are related to the progressive burial depth/temperature in many sedimentary basins. However, some phenomena show that this opinion could not explain features in mudstones from some particular regions on the Earth. In order to investigate the main factors that influence diagenesis in basins, this paper focuses on the characteristics of clay mineral assemblages, and composition of chlorites in the mudstone in Xinjiang Tabei Uplift, China, as well as the relationship between the characteristics and the paleosalinity of the basin. The results show the following four points. (1) The assemblages of the clay minerals in the depth range of 2777.37 m to 4604.41 m, which were generated during Jurassic Period and Eogene Period (J1-N2), are I+Chl and I+Chl+Ka; while the assemblages in the depth range of 5071.52 m to 5299.37 m, which were generated during Triassic period (T1), are R0I/S+ Chl+I and R0I/S +Chl. (2) The diagenetic chlorite in this area is brunsvlgite in TypeⅡb polymorphism; its composition features show that (a) the average value of octahedral occupancy is 11.532; (b) the octahedral Al amount is obviously greater than the tetrahedral Al amount; (c) the average value of(Fe+Mg)is 4.016; (d) the ratio of Si/Al is higher than 1. (3) According to the distribution of the mineral salts and the data of ancient salinity in the area, it is proposed that paleosalinity was the main factor that affects the clay mineral assemblages and the compositional changes of chlorites in the area. In this paper, paleosalinity is utilized to explain an abnormal phenomenon in the clay mineral assemblages. There is not a disorderly mixed layer of illite / smectite (R0I/S) in the samples from the depths less than 5000 m, while there is a disorderly mixed layer of illite/smectite(R0I/S) in the samples from the depths greater than 5000 m. Also, it is revealed that the composition of chlorites is affected by the paleosalinity in a certain depth range (2777.37~4405.27 m) and certain ancient salinity conditions (Sr/Ba ratio≥0.4 with the appearance of salt minerals). While the salinity is higher, its influence is greater. With the increase of salinity, the contents of Al, ⅣAl, Na, Na2O, Al/Si in chlorites increase, while Si/Al decreases. The temperature obtained by the chlorite composition thermometer increases with higher salinity, which indicates that the temperature calculated by the chlorite composition thermometer cannot represent the actual burial paleotemperature in the area. (4) Between the composition of the chlorites and the host rocks in the area, such as SiO2chl-SiO2rock and FeOchl -FeOrock, there are negative correlations, which are not disturbed under the influence of paleosalinity.

Key words:  TabeiUplift, Xinjiang, claymineralassemblages, chloritecomposition, paleosalinity, rockchemicalcomposition