CO2地质封存是应对全球性气候变化、减排温室气体的关键技术之一。大规模CO2注入地层容易出现泄漏问题,尤其是通过盖层的泄漏,包括毛细管泄漏、盖层水力破裂和沿盖层既有断层的泄漏等。因此,盖层密闭性评价对CO2地质封存长期安全稳定性的预测至关重要的。通过对密闭机理、影响因素、破坏模式等影响CO2地质封存盖层密闭性的研究现状进行总结,发现盖层密闭机理包括毛细管封闭、水力封闭和超压封闭,影响盖层密闭性的主要因素有盖层岩性、盖地比特征、盖层厚度、盖层岩石力学性质和封存压力,进而对CO2注入过程中盖层密闭性的破坏模式进行评价,并对盖层密闭性研究的不足提出了一些见解。
CO2 Geological storage is one of the key technologies to address global climate changes and reduce greenhouse gas emissions. Large-scale CO2 injection into the formation is prone to inducing CO2 leakage problem. In particular, the leakage problem of CO2 through caprock includes capillary leakage, hydraulic fracture and leakage along pre-existing faults crossing caprock. Therefore, evaluation of caprock seal is crucial for prediction of long-term safety and stability of CO2 geological storage. This paper provides an overview of the current status of research on sealing mechanisms, influencing factors, and damage modes affecting caprock seal of CO2 geological storage. It is concluded that caprock seal mechanisms include capillary seal, hydraulic seal, and overpressure seal. The main influencing factors of caprock seal characteristics include caprock lithology, mudrock-sand ratio, caprock mechanical properties, and sequestration pressure. Then, the damage modes of caprock seal during CO2 injection are illustrated, and some insight into the shortcoming of caprock seal is provided.