Welcome to Geological Journal of China Universities ! Today is
Share:

Geological Journal of China Universities ›› 2023, Vol. 29 ›› Issue (5): 657-678.DOI: 10.16108/j.issn1006-7493.2022018

    Next Articles

Genesis Process of the Cretaceous Daqushan Pluton in Zhejiang Province: Crystal-Melt Separation and Magmatic Recharge

HE Chen1,XIA Yan1, 2*,XU Xisheng1,QIU Jiansheng1, XU Hang1,ZHANG Zhi1,ZHAO Sidi1   

  1. 1. State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;
    2. Frontiers Science Center for Critical Earth Cycling, Nanjing University, Nanjing 210023, China
  • Online:2023-10-11 Published:2023-10-10

Abstract: The models of trans-crustal magmatic system and crystal mush provide new insights into the study of Cretaceous magmatism in northeast China. The Daqushan pluton is located in the northeast of coastal Zhejiang and Fujian. It is mainly composed of K-feldspar granite with abundant melanocratic microgranular enclaves (MME) and is locally traversed by several mafic-intermediate dikes. A small outcrop of monzonite is exposed near the Chaotoumen. MME have a fine-grained texture with acicular apatites. Zircon U-Pb dating results show that the rock samples in the Daqushan pluton (including the K-feldspar granite, MME, monzonite, and mafic-intermediate dikes) crystallized at ~100 Ma. The K-feldspar granite are highly silicic (SiO2=68.45%-73.82%). While the miarolitic granite (DQS-7) without MME has the higher silica (76.27%), and its whole-rock geochemical and Sr-Nd isotope compositions are similar to those of coeval high silica granites (SiO2>75%) exposed around the Daqushan pluton. Daqushan K-feldspar granite bearing aggregates of plagioclase and K-feldspar exhibit“complementary”trace element geochemical characteristics with Daqushan miarolite and surrounding high silica granites. Further researches show that the Daqushan K-feldspar granite and miarolite were formed by felsic magma which originated from the partial melting of the ancient crustal basement and was recharged by mantle-derived magma. Such felsic magma underwent fractional crystallization and the extraction of high silica melt. Then, the residual silicic cumulate of the crystal mush and high silica melt crystallized and formed the Daqushan K-feldspar granite, miarolite and the surrounding coeval high silica granites. The mafic dikes of Daqushan are enriched in LILEs and depleted in HFSEs
and are derived from the partial melting of the enriched mantle metasomatized by subducted dehydration fluids. The results of EPMA analyses indicate that the plagioclase in the K-feldspar granite and MME has a core-mantle-rim texture with low- An in the core (27-36, 25-41) and rim (17-32, 18-26) and relatively high-An in the mantle (28-57, 27-65). Integration of the element geochemical characteristics and Sr-Nd-Hf isotopic results, monzonite and intermediate dikes should be the product of magma mixing of mantle-derived mafic magma and felsic magma, while MME are the product of magma mingling of the two endmembers. The results of the Al-in-hornblende geobarometer show that the crystallization depth of MME is 1.8- 3.0 km, hornblende in monzonite develops core-mantle-rim texture, the crystallization depth of hornblende core and mantle is 17.0-21.2 km, and the depth of hornblende rim is 1.9-4.5 km. Based on the study of the origin and genetic relationships of K-feldspar granite, MME, miarolite, monzonite and mafic-intermediate dikes, and compared with the surrounding coeval high silica granites, this study establishes a model of trans-crustal magmatic systems for Daqushan pluton. The rollback of the subducting paleo-Pacific plate, the back-arc extension in the coastal area and the upwelling of the asthenosphere led to the underplating of the mantle-derived mafic magma, and further induced the partial melting of basement rocks in the lower crust to produce felsic magma. The continuous recharge and heating of mantle-derived magma favor the existence of long-lived melt-bearing regions in magma chambers, promoting magma differentiation and crystal-melt separation and thus forming two magma chambers with depths of 17-21 km and 2-3 km, respectively. K-feldspar granite, high silica granites, monzonite, MME and intermediate-mafic dikes were formed by magma mingling/mixing and crystal-melt separation in two connected magma chambers at different depths.

Key words: trans-crustal magmatic system, crystal mush, crystal-melt separation, magma mixing/mingling, hornblende, plagioclase

CLC Number: