Welcome to Geological Journal of China Universities ! Today is
Share:

Geological Journal of China Universities ›› 2024, Vol. 30 ›› Issue (02): 119-132.DOI: 10.16108/j.issn1006-7493.2023019

    Next Articles

Molecular Simulations on the Controls of Phase Transition of Ca-Mg-Ba-CO3 Amorphous Precursors by Dehydration: Comparative Study of Dolomite and Norsethite

CHEN Yan,ZHU Xiangyu,TENG Hui*   

  1. School of Earth System Science, Tianjin University, Tianjin 300072, China
  • Online:2024-04-20 Published:2024-04-20

Abstract: Dolomite, one of the most widely distributed carbonate minerals on the Earth’s surface, is abundantly developed in ancient strata, but rarely exposed in modern marine environments. After decades of research, few low-temperature experiments have been reported to successfully synthesize ordered dolomite. The mineralization behavior of dolomite is one of the most intriguing mysteries. Conventional wisdom theories that Mg2+ hydration is the critical limit for Mg2+ to enter carbonate lattice. However, a recent study unveiled evidence questioning this premise and instead indicated that the structural constraints in the relevant amorphous precursor phase may play a more important role. Because transformation and crystallization of amorphous precursor phase in solution is a likely crystallization pathway for dolomite formation, and dehydration may have a pivotal effect on this process. Therefore, we carried out a study using molecular dynamics simulations to study the phase transition and dehydration process of amorphous precursors in Ca-Mg-Ba-CO3 systems. The results show that the density increases significantly during the dehydration process, but the distances between metal cations and other ions are little affected and the total coordination number is unchanged. In terms of translational dynamics, the diffusion behavior of amorphous precursors in hydrated Ca-Mg-CO3 and Ba-Mg-CO3 systems (i.e., ACMC and ABMC) are similar, but the particle of ACMC is less mobile, hindering the aggregation of nucleation clusters. Thermodynamically, there is a significant difference in the dehydration enthalpy between ACMC and ABMC systems, with ACMC system having a higher dehydration enthalpy and the difficulty in losing the last few H2O molecule from the structure, presumably limiting dolomite crystallization. This study systematically addressed the role of dehydration in controlling the crystallization of dolomite and norsethite and the findings of this study may provide insight into the “dolomite problem”.

Key words: dolomite, norsethite, amorphous phase, dehydration, molecular dynamics simulation

CLC Number: