欢迎访问《高校地质学报》官方网站,今天是
分享到:

高校地质学报 ›› 2023, Vol. 29 ›› Issue (4): 600-607.DOI: 10.16108/j.issn1006-7493.2021076

• 水文地质学 • 上一篇    下一篇

活化过硫酸钠体系降解三氯乙烯效能研究

郝 天,张 云*   

  1. 南京大学 地球科学与工程学院,南京 210023
  • 出版日期:2023-08-15 发布日期:2023-08-15

Degradation of Trichloroethylene in Activated Sodium Persulfate System

HAO Tian,ZHANG Yun*   

  1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
  • Online:2023-08-15 Published:2023-08-15

摘要: 以三氯乙烯(TCE)为目标污染物,研究柠檬酸钠(TCD)、柠檬酸(CA)作为螯合剂,螯合Fe2+催化过硫酸钠(Na2S2O8)降解水溶液中TCE的效果,研究氧化剂投加量、螯合剂投加量、pH值等对TCE降解效果的影响,得出Na2S2O8降解TCE时各组分的最佳投加比例和适宜的pH值。结果表明,TCD和CA两种螯合剂均能有效螯合Fe2+催化过硫酸钠体系降解TCE,且TCE的降解符合一级动力学过程,Na2S2O8/TCD/Fe2+/TCE的最佳摩尔比为20:10:10:1, Na2S2O8/CA/Fe2+/TCE的最佳摩尔比为20:5:10:1,这时两种体系降解率和TCE的一级反应动力学常数都达到最大,两种体系降解率分别为96.7%、97.6%,TCE一级反应动力学常数分别为2.48×10-2 、2.68×10-2 min-1,达到最佳投加量时CA的用量仅为TCD用量的一半。在投加量较小时,随TCD和CA及Na2S2O8投加量增加,TCE的降解率增大,一级反应动力学常数也增大,但过量螯合剂会与Fe2+形成过于稳定的螯合物,影响Fe2+的催化效果,削弱Na2S2O8的氧化能力,过量Na2S2O8会产生过多的硫酸根自由基SO4-·,SO4-·会相互消耗抑制反应的进行。在Na2S2O8/Fe2+/TCE的摩尔比为20:10:1的体系中,若加入TCD的摩尔比大于10或加入CA的摩尔比大于5,对Fe2+的催化效果将减弱。在TCD/Fe2+/TCE的摩尔比为10:10:1的反应体系或CA/Fe2+/TCE的摩尔比为5:10:1的反应体系中,Na2S2O8摩尔数比大于20时,会抑制反应的进行。过硫酸钠体系降解TCE需要维持在一定的pH范围内,碱性条件不利于反应的进行,中性和酸性条件有利于反应的进行。

关键词: 三氯乙烯, 螯合剂, 过硫酸钠, 降解, 反应动力学

Abstract: Trichloroethylene (TCE) was taken as a target pollutant to study its degradation characteristics in the environmentally friendly chelating agents, sodium citrate (TCD) and citric acid (CA), chelating ferrous ion (Fe2+)-catalyzed sodium persulfate (Na2S2O8) system. The effects of the proportion of sodium persulfate, chelating agents, and pH value on the degradation of TCE were investigated, and the optimal proportion of all components and suitable pH value were obtained. Both TCD and CA had effectively chelated Fe2+-catalyzed sodium persulfate, which degraded TCE in water, and the degradation of TCE abided by the first-order kinetic reaction model. The optimal proportion in mole was 20:10:10:1 for Na2S2O8/TCD/Fe2+/TCE and 20:5:10:1 for  Na2S2O8/CA/Fe2+/TCE, respectively, at which both the degradation rate and the first-order reactive rate constant reached their
maximum values. The maximal degradation rate was 96.7% and 97.6% and the maximal reactive rate constant was 2.48×10-2 and 2.68×10-2 min-1 for the two reactive systems, respectively. Additionally, the usage of CA for the optimal proportion was only half of TCD. For small proportion, both degradation rate of TCE and the first-order reaction rate constant increased with the increasing amount of TCE, CA, or Na2S2O8. However, excessive chelating agents could form an over-stabilized chelate with Fe2+, which reduced the catalytic effect of Fe2+ and the oxidative capacity of Na2S2O8. Excessive amount of Na2S2O8 could generate much more sulfate radicals, and these sulfate radicals could consume internally, refraining the degradation reaction of TCE. In the system of Na2S2O8/ Fe2+/TCE being 20:10:1, the catalytic effect would dwindle if the proportion in mole was greater than 10 for TCD and 5 for CA. In the system of TCD/Fe2+/TCE being10:10:1or CA/Fe2+/TCE being 5:10:1, the reaction would be refrained if the proportion in mole was greater than 20 for Na2S2O8. A suitable range of pH value was necessary for the degradation of TCE in activated sodium persulfate system. Alkaline condition refrained the degradation reaction of TCE, while acid to neutral condition was helpful for the reaction.

Key words: trichloroethylene (TCE), chelating agent, sodium persulfate, degradation, reactive kinetics

中图分类号: