高校地质学报 ›› 2022, Vol. 28 ›› Issue (6): 799-813.DOI: 10.16108/j.issn1006-7493.2021086
李全坤,赵万伏,文宇博,郭 超,刘连文,季峻峰
LI Quankun,ZHAO Wanfu,WEN Yubo,GUO Chao,LIU Lianwen,JI Junfeng
摘要: 对于人为因素或自然因素造成的农田土壤重金属元素污染,需要进行大面积的土壤环境质量调查和分类管控,然而传统的采样测试方法存在工作量大、代价高等问题。可见—近红外(Vis-NIR)反射光谱是一种快速低成本获取土壤理化信息的手段。为研究Vis-NIR反射光谱预测模型划分土壤重金属污染风险类别的能力,文章以典型人为污染地区(浙江温岭)和典型地质高背景地区(广西横县)的390份农田土壤为样本,测定8种重金属元素(As、Cd、Cr、Cu、Hg、Ni、Pb和Zn)的含量和pH值,并测定土壤Vis-NIR光谱。使用偏最小二乘(PLS)和支持向量机(SVM)算法建立回归模型,对土壤重金属含量和pH值进行预测,并基于预测值进行土壤重金属污染风险分类。结果显示,温岭土壤主要污染元素Cd和Cu的光谱模型回归预测偏差(RPD)分别为1.23和1.19,预测机制与有机质有关。横县土壤主要污染元素As和Cd的RPD分别为1.98和1.93,预测机制与铁氧化物和粘土矿物有关。地质高背景土壤重金属与铁氧化物的正相关性普遍较强,使得光谱模型对重金属含量预测准确度较高。温岭和横县土壤pH值的光谱模型RPD分别为1.76和1.68。土壤重金属污染风险光谱分类的总体
准确度分别为75.0%~100%(温岭)和80.0%~100%(横县)。将Vis-NIR光谱与遥感技术相结合,对农田土壤重金属污染风险进行快速分类总体是可行的。
中图分类号: