欢迎访问《高校地质学报》官方网站,今天是
分享到:

高校地质学报 ›› 2024, Vol. 30 ›› Issue (06): 668-677.DOI: 10.16108/j.issn1006-7493.2023060

• • 上一篇    下一篇

小龙虾壳生物炭对重金属Ni(II) 的吸附特征及机理探究

许小淇1,周 斌1, 2*,李锦徽1,陈 旸1, 2   

  1. 1. 表生地球化学教育部重点实验室,南京大学 地球科学与工程学院,南京 210023;
    2. 关键地球物质循环前沿科学中心,南京 210023
  • 出版日期:2024-12-20 发布日期:2024-12-20

Exploration of the Adsorption Characteristics and Mechanisms of Heavy Metal Ni(II) by the Biochar Prepared from Crayfish Shell

XU Xiaoqi1,ZHOU Bin1,2*,LI Jinhui1,CHEN Yang1,2   

  1. 1. Key Laboratory of Surface Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;
    2. Frontiers Science Center for Critical Earth Material Cycling, Nanjing 210023, China
  • Online:2024-12-20 Published:2024-12-20

摘要: 小龙虾壳是一种常见的厨余垃圾废弃物,将其制成生物炭吸附重金属从而减少污染,可实现其资源化利用。不同的原料处理方式可能会影响小龙虾壳生物炭对重金属的吸附作用,探明其机理将有助于优化小龙虾壳生物炭的生产和应用,进而对厨余垃圾废弃物的处理提供参考。该研究以小龙虾壳为原料,通过不同处理方式得到三种生物炭:生虾壳炭(CB)、烹饪后清洗的虾壳炭(WCB)及烹饪后未洗的虾壳炭(CCB)。采用批量吸附实验,结合扫描电子显微镜(SEM)、X射线衍射(XRD)和傅立叶变换红外光谱(FTIR)等测试方法对生物炭的性质及吸附机理进行探究。结果显示,比表面积和平衡吸附量的顺序为CB>WCB>CCB,最大吸附量的顺序为CB>CCB>WCB;三种生物炭对Ni(II)的吸附动力学符合Elovich模型,拟一级动力学模型和拟二级动力学模型,吸附等温线符合Langmuir模型和Freundlich模型;吸附机理有物理吸附、阳离子交换,表面官能团络合;经烹饪的虾壳较生虾壳更难资源化利用,清洗处理对吸附量的影响并不显著,因此利用烹饪后未清洗的小龙虾壳制生物炭更经济环保。

关键词: 生物炭, 小龙虾壳, 厨余垃圾, Ni(II), 重金属吸附

Abstract: Crayfish shells are a common type of kitchen waste, and their transformation into biochar for the purpose of adsorbing heavy metal pollutants in water can mitigate pollution and facilitate resource utilization. The various processing methods applied to the raw materials may exert an influence on the adsorption of heavy metals by crayfish shell biochar. A comprehensive understanding of these underlying mechanisms can contribute to the optimization of crayfish shell biochar production and application, thereby offering valuable insights into the management of kitchen waste. In this study, crayfish shells were employed as the primary raw materials, and three types of biochar were obtained through diverse processing methods: raw crayfish shell biochar (CB), cooked and washed crayfish shell biochar (WCB), and cooked and unwashed crayfish shell biochar (CCB). Subsequent batch adsorption experiments were conducted, with a comprehensive exploration of biochar characteristics and adsorption mechanisms through analytical techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The findings revealed a hierarchy in specific surface area and equilibrium adsorption capacity as CB>WCB>CCB, while the maximum adsorption capacity displayed a sequence of CB>CCB>WCB. The adsorption kinetics of Ni(II) by all three biochar types conformed to the Elovich model, pseudo-first-order and pseudo-secondorder kinetic model. The adsorption isotherms followed the Langmuir and Freundlich models. The adsorption mechanisms included physical adsorption, ion exchange, and surface functional group complexation. Notably, cooked crayfish shells proved to be less conducive to resource utilization compared to their raw counterparts, and washing treatments had a negligible impact on adsorption capacity. Consequently, the utilization of unwashed cooked crayfish shells for biochar production emerges as a more economically and environmentally viable alternative.

Key words: pbiochar, crayfish shell, kitchen waste, Ni(II), heavy metal adsorption

中图分类号: