欢迎访问《高校地质学报》官方网站,今天是
分享到:

高校地质学报 ›› 2025, Vol. 31 ›› Issue (06): 756-768.DOI: 10.16108/j.issn1006-7493.2025003

• • 上一篇    下一篇

面向地质灾害数据的检索技术研究

程 刚1, 2,吴亚熹1,王 晔3*,施 斌2,游钦凉1   

  1. 1. 华北科技学院 计算机科学与工程学院,北京 101601;

    2. 南京大学 地球科学与工程学院,南京 210023;

    3. 华北科技学院 研究生部,北京 101601

  • 出版日期:2025-12-20 发布日期:2025-12-20

Research on Retrieval Technology for Geological Disaster Data

CHENG Gang1,2,WU Yaxi1,WANG Ye3*,SHI Bin2,YOU Qinliang1   

  1. 1. School of Computer Science and Engineering, North China Institute of Science and Technology, Beijing 101601, China;
    2. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;
    3. Graduate Department, North China Institute of Science and Technology, Beijing 101601, China
  • Online:2025-12-20 Published:2025-12-20

摘要: 中国是全球地质灾害最为严重的国家之一,地质灾害易发频发,且种类多样。受近年来极端天气的叠加效应影响,加速了各类地质灾害的发生频次与致灾程度,由此导致各类地质灾害监测预警、应急救援和灾后恢复重建的难度日益增大。如何引入信息化新技术开展地质灾害数据的深度分析与利用,已成为未来地质灾害防治的新突破口。为全面精准地开展地质灾害数据的检索与分析研判,文章首先分析了中国地质灾害研究背景与当前检索技术发展现状;其次,从数据类型和数据特点两大方面对地质灾害数据进行概述,系统性介绍了主成分分析方法、卷积神经网络方法、哈希方法三类数据检索技术,并以2024年云南镇雄“1.22”山体滑坡地质灾害为例,对微博中关于该滑坡灾害的相关数据进行检索分析与聚类可视化展示,研究结果为检索技术在地质灾害防治领域中的应用与发展提供指导;最后,从未来主成分分析方法改进、哈希方法优化和局限性思考等方面,提出强化数据检索技术与地质灾害应急的融合,以不断满足海量灾害数据对检索速度和信息处理性能的需求。

关键词: 地质灾害, 数据检索技术, 主成分分析, 哈希方法, 可视化

Abstract: China is one of the countries with the most serious geological disasters in the world. Geological disasters occur frequently and are of various kinds. In recent years, the superimposed effects of extreme weather have accelerated the frequency and degree of various geological disasters, resulting in increasingly difficult monitoring and warning, emergency rescue, and postdisaster recovery and reconstruction of various geological disasters. How to introduce new information technology to carry out indepth analysis and utilization of geological disaster data has become a breakthrough in future geological disaster prevention and control. To carry out the research and analysis of geological disaster data comprehensively and accurately, this paper first analyzes the research background of geological disasters in China and the current development status of retrieval technology. Then, fromthe perspective of data types and data characteristics, this paper summarizes geological disaster data, systematically introduces three data retrieval technologies, namely the principal component analysis method, convolutional neural network method, and hash method, and takes the “1.22” landslide geological disaster in Zhenxiong, Yunnan in 2024 as an example. The data related to the landslide disaster in the microblog were retrieved and analyzed, and the cluster visualization was displayed. In addition, the research results guided the application and development of retrieval technology in the field of geological disaster prevention and control. Finally, from the aspects of future principal component analysis method improvement, hash method optimization, and limitation of thinking, it is proposed to strengthen the integration of data retrieval technology and geological disaster emergency response so as to continuously meet the needs of massive disaster data on retrieval speed and information processing performance.

Key words: geological disasters, data retrieval technology, principal component analysis, hash method, visualization

中图分类号: