欢迎访问《高校地质学报》官方网站,今天是
分享到:

高校地质学报 ›› 2025, Vol. 31 ›› Issue (05): 524-534.DOI: 10.16108/j.issn1006-7493.2024074

• • 上一篇    下一篇

苏北盆地小洋口地热区域的三维构造与速度模型

梁铂雨,王毛毛*,钱佳威,于鹏飞,李 晗,张 超,闫 兵,苏金宝,马皓然   

  1. 河海大学 海洋学院,南京 210098
  • 出版日期:2025-10-20 发布日期:2025-10-20

Three-dimensional Structure and Velocity Model of Xiaoyangkou Geothermal Field in the Subei Basin

LIANG Boyu,WANG Maomao*,QIAN Jiawei,YU Pengfei,LI Han,ZHANG Chao,YAN Bing, SU Jinbao,MA Haoran#br#   

  1. College of Oceanography, Hohai University, Nanjing 210098, China
  • Online:2025-10-20 Published:2025-10-20

摘要: 小洋口地热田位于苏北盆地海安凹陷南缘,区域上被近东西向的栟茶河断裂、北东向的金坛—如皋断裂所围限。小洋口RRY1地热井是目前江苏省内温度最高(92°)的唯一高产中温型地热井,然而对于该地热资源的形成、分布及其与区域断裂体系之间的关系尚未完全确立。结合区域内地震反射剖面、钻井等资料,文章开展了栟茶河断裂与金坛—如皋断裂三维深部构造与速度建模工作,探讨小洋口地热资源形成的构造控制机制。通过布设密集台阵采集背景噪声数据,采用互相关计算、频散曲线提取、直接反演成像等处理方法,获得了研究区地下4 km以浅的三维横波速度结构。三维构造建模表明研究区内栟茶河断裂与金坛—如皋断裂走向为NEE向,断面向北倾,倾角多在60°~70°之间。三维速度模型显示,在2.0~3.5 km深度平面上,横波速度结构具有显著的横向分布非均质特征,高速与低速分界线和栟茶河断裂与金坛—如皋断裂具有较高的一致性,反映出凹陷内发育的正断层对速度结构的影响。此外,还发现了栟茶河断裂与金坛—如皋断裂之间存在一个明显的低速异常区,垂向上表现为横波速度梯度的降低,与钻孔在2.0~2.8 km深度范围的志留系石英砂岩地热储层位置一致。根据区域三维断裂构造与速度模型,结合前人的研究成果,文章提出小洋口地热在新近系底界上下分别形成的“传导型”与“对流型”两种地热模式,主要受控于区域断裂体系与深部流体对流的认识,对进一步勘探海岸带断裂构造相关的地热资源具有一定的启示。

关键词: 小洋口地热, 断裂结构, 栟茶河断裂, 三维构造建模, 背景噪声面波成像

Abstract: The Xiaoyangkou geothermal field is located in the southern part of the Haian sag in the Subei Basin, bounded by
the near east-west Benchahe fault and the northeast-oriented Jintan-Rugao fault. The geothermal well RRY1 of Xiaoyangkou is currently the only intermediate-temperature geothermal well in Jiangsu Province, with a peak temperature of 92 ℃ . However, the formation, distribution, and relationship of this geothermal resource with the regional fault system remain unclear. This study integrates regional seismic reflection profiles and drilling data to conduct 3D structural and velocity modeling of the Benchahe fault and Jintan-Rugao fault to explore the structural controls on the formation of the Xiaoyangkou geothermal resources. We collected ambient noise data using a dense array and applied cross-correlation calculations, dispersion curve extraction, and direct inversion tomography to construct a 3D shear wave velocity structure down to 4 km. The 3D structural model shows that the Benchahe and Jintan-Rugao faults trend NEE with a northern dip of 60° to 70°. The 3D velocity model reveals significant lateral heterogeneity in the shear wave velocity structure at depths of 2.0 to 3.5 km, with high-velocity and low-velocity boundaries correlating strongly with the Benchahe and Jintan-Rugao faults, reflecting the influence of normal faulting within the sag on the velocity structure. Additionally, a distinct low-velocity anomaly is observed between the Benchahe fault and Jintan-Rugao fault, manifesting vertically as a decrease in shear wave velocity gradient, which coincides with the position of the Silurian quartz sandstone geothermal reservoir at depths of 2.0 to 2.8 km. Based on the regional 3D fault structure and velocity models, as well as previous studies, this research proposes two geothermal modes:‘conductive’above and‘convective’below the Neogene base are primarily controlled by the regional fault system and deep fluid convection, offering a framework for future exploration of faultrelated geothermal resources in coastal zones. 

Key words: Xiaoyangkou geothermal field, structure of faults, Benchahe fault, three-dimensional structure modeling, ambient
noise shear wave tomography