欢迎访问《高校地质学报》官方网站,今天是
分享到:

J4 ›› 2011, Vol. 17 ›› Issue (3): 351-.

• 岩浆作用、成矿作用与地球动力学专栏 •    下一篇

岩浆作用与青藏高原演化

莫宣学   

  1. 中国地质大学(北京)
  • 收稿日期:2010-12-20 修回日期:2011-08-28 出版日期:2011-09-20 发布日期:2011-09-20
  • 通讯作者: 莫宣学,男,教授,中国科学院院士,岩石学,岩浆-构造-成矿方向
  • 作者简介:莫宣学,男,教授,中国科学院院士,岩石学,岩浆-构造-成矿方向

Magmatism and Evolution of the Tibetan Plateau

 MO Xuan-Xue   

  1. China University of Geosciences, Beijing
  • Received:2010-12-20 Revised:2011-08-28 Online:2011-09-20 Published:2011-09-20

摘要:

        青藏高原是我国岩浆岩最发育的地区之一,出露着从元古宇到新生代各个地质时期多种类型的火山岩与侵入岩,面
积达30万km2左右,占全区面积的10%以上。这些岩浆岩在青藏大陆动力学研究中有着重要的作用,既是探测深部的“探
针”和“窗口”,又是构造演化的记录,并形成重要的构造-岩浆-成矿带。本文拟通过岩浆作用和岩浆岩来研究青藏高原
演化的一些科学问题。(1)印度-亚洲大陆碰撞时限:印度-亚洲大陆碰撞时限是青藏高原形成演化中一个非常重要的基础
问题,也是国际上争论的一个热点,到目前为止,分歧仍然很大,从主张早于70 Ma 到34 Ma都有。本文根据来自我国西藏
南部延伸1500 km以上的主碰撞带的综合证据提出,印度-亚洲大陆碰撞开始的时间为70/65 Ma,完成的时间在40 Ma左右,
这个时期称为同碰撞期,40 Ma之后转入后碰撞期。(2)同碰撞阶段的壳-幔交换—底侵与岩浆混合作用: 南冈底斯带同碰撞
花岗岩中有着丰富的岩浆底侵作用与岩浆混合作用证据。这两种作用,是通过岩浆作用实现壳-幔间物质和能量的交换,
是两种不同而又密切相关的大陆地壳生长方式。(3) 青藏巨厚地壳的成因: 双倍于正常厚度的巨厚地壳,是青藏高原最显著
的特点之一,世界瞩目。通过对同碰撞与后碰撞火成岩的研究提出“两类地壳、两种机制”的认识,即新生地壳与再循环
地壳;构造挤压增厚机制与地幔物质注入增厚机制。(4)青藏岩石圈的组成、结构与演化:高原岩石圈地幔存在三种地球
化学端元,存在三种岩石圈结构类型,已在青藏高原多处发现地幔与下地壳岩石的地表露头及火成岩所携带的深源岩石包
体。(5)青藏高原深部物质的可能流动:青藏高原新生代碰撞-后碰撞火成活动有规律的时空迁移,以及深部地球物理探
测,都暗示碰撞引起壳幔深部物质的横向流动

关键词: 青藏高原;岩浆作用;岩浆岩;大陆碰撞;壳幔交换;地壳生长;岩石圈;横向流动

Abstract:

The Tibetan Plateau  is one of  the regions  in China where  igneous rocks are very widely developed. Various  types of
volcanic and plutonic rocks are distributed over 300,000 km2 in area and take 10% area of the entire Plateau. These igneous rocks
and carried deep-seated nodules play  important  roles  in understanding geodynamic evolution of  the Tibetan Plateau, as either
lithoprobes/windows or  tectonic  records, and are closely  related  to mineralization as well. This paper discusses some  important
scientific  topics via studying  igneous  rocks.  (1) The  timing of  Indo-Asia collision: This  is a very  important scientific problem.
There  is, however, a wide  range of discrepancy about  the  timing of  initiation of  the collision  (from earlier  than 70 Ma,  to even
later than 34 Ma). According to multiple lines of evidences from the 1500 km-extending main collision zone in southern Tibet, we
deduced a conclusion that Indo-Asia collision likely started from 65/70 Ma and completed in c. 40 Ma (syn-collisional stage), and
then transformed into post-collisional stage after 40 Ma. (2) Underplating and magma mixing, an event of mantle-crust interaction
during  syn-collisional  stage: There are abundant evidences  for underplating and magma mixing  in  southern Gangdese. An

important process of continental growth and evolution took place in the Tibetan Plateau. (3) The origin of formation of extremely
thick crust of  the Tibetan Plateau: A deduction of “Two  types of crust and  two  types of mechanism”  is suggested based on  the
studies of collisional and post-collisional  igneous  rocks. There are  two  types of crust,  juvenile crust and  recycled crust,  in  the
Plateau. Crustal  thickening of  the Plateau was caused by  two  types of mechanism,  i.e., both structural compression and  input of
mantle materials via magmatism. (4) The composition, structure and evolution of the lithosphere of the Tibetan Plateau: There are
three geochemical reservoirs in the lithospheric mantle, and three types of lithospheric structure underneath the Tibetan Plateau.
Nodules and outcrops of mantle/lower crust-seated rocks are found in several locations of the Plateau. (5) Possible lateral flow of
lower crust and upper mantle: Migration of collisional and post-collisional volcanism with time shows a highly distinctive pattern,
which can be interpreted to reflect lateral flow of the lower crust and asthenospheric mantle induced by the approach and ensuing
collision of relatively thick (India and Eurasia) continental plates.

Key words:  Tibetan Plateau, magmatism, igneous rocks, continental collision, mantle-crust interaction, crust growth, lithosphere, lateral flow

中图分类号: