欢迎访问《高校地质学报》官方网站,今天是
分享到:

高校地质学报 ›› 2023, Vol. 29 ›› Issue (6): 795-808.DOI: 10.16108/j.issn1006-7493.2022049

• 岩石·矿物·地球化学 •    下一篇

赣北阳储岭钨矿区花岗斑岩成因

黄 玉1,黄旭栋1,陆建军1*,章荣清1,吴劲薇1,严济池2   

  1. 1. 内生金属矿床成矿机制研究国家重点实验室,南京大学 地球科学与工程学院,南京 210023;
    2. 江西漂塘钨业有限公司,赣州 341515
  • 出版日期:2023-12-20 发布日期:2023-12-18

Petrogenesis of Granite Porphyry in the Yangchuling Tungsten Ore District, Northern Jiangxi

HUANG Yu1,HUANG Xudong1,LU Jianjun1*,ZHANG Rongqing1,WU Jinwei1,YAN Jichi2   

  1. 1. State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;
    2. Jiangxi Piaotang Tungsten Industry Co., Ltd., Ganzhou 341515, China
  • Online:2023-12-20 Published:2023-12-18

摘要: 赣北阳储岭钨矿区出露花岗闪长岩、二长花岗斑岩和花岗斑岩。花岗闪长岩与二长花岗斑岩形成于晚侏罗世,来自相同源区,后者比前者岩浆演化程度更高。钨矿化主要呈细脉浸染状分布于二长花岗斑岩中,花岗斑岩呈脉状切穿矿体。文章对阳储岭花岗斑岩开展了锆石U-Pb定年、岩石化学分析和Sr-Nd-Hf同位素研究,通过与前人发表数据对比,探讨了花岗斑岩与二长花岗斑岩、花岗闪长岩的成因差异,为揭示钨矿成因提供了新的约束。LA-ICP-MS锆石U-Pb定年显示,花岗斑岩形成于144.6±1.8 Ma,与花岗闪长岩、二长花岗斑岩形成年龄一致。花岗斑岩具有高硅、富钾和弱过铝质的特征,微量元素蛛网图显示明显的Ba、Nb、Sr、P和Ti亏损,稀土元素配分曲线呈右倾斜型,显示负Eu异常,指示长石、黑云母、磷灰石和钛铁氧化物等矿物的分离结晶。花岗斑岩的全岩(87Sr/86Sr)i比值为0.711329~0.711726,εNd(t)值为-5.3至-4.9,εHf(t)值为-4.6至-4.2,锆石εHf(t)值主要为-6.0至-3.0,说明其源岩主要为古老的地壳物质。与花岗闪长岩和二长花岗斑岩相比,花岗斑岩具有更高的HFSE、ΣREE含量、AMF值、Sr/V比值和更低的Mg#值、Ti/Zr比值、全岩εHf(t)值,暗示它来自更富长英质组分的源区,是古老变质沉积物部分熔融的产物。与二长花岗斑岩相比,花岗斑岩具有更高的SiO2含量、(Na2O+K2O)/CaO、Na2O/CaO、Ba/Sr、Rb/Sr比值和更低的CaO、MgO、TiO2、P2O5含量、δEu值,表明它经历了更强烈的岩浆结晶分异过程。花岗斑岩不成矿反映其源区贫钨,而花岗闪长岩和二长花岗斑岩的源区相对富钨。花岗岩源区富钨和岩浆分异演化都是促使阳储岭钨矿形成的重要因素。

关键词: 锆石U-Pb定年, Sr-Nd-Hf同位素, 岩石成因, 花岗岩源区, 阳储岭花岗斑岩, 赣北

Abstract: Granodiorite, monzogranite porphyry, and granite porphyry are exposed in the Yangchuling tungsten ore district, northern Jiangxi. The granodiorite and monzogranite porphyry were formed in Late Jurassic and derived from the same source and the latter is more evolved than the former. Tungsten mineralization dominantly occurs as veinlet-disseminated within the monzogranite porphyry which is cut by the granite porphyry dykes. In this contribution, zircon U-Pb chronological, petrochemical, and Sr-Nd-Hf isotope geochemical studies are carried out on the Yangchuling granite porphyry, aiming to reveal the petrogenetic differences between the granite porphyry and the monzogranite porphyry and granodiorite in combination with other published data and provide new constraints for tungsten ore genesis. LA-ICP-MS zircon U-Pb dating manifests that the granite porphyry was formed at 144.6±1.8 Ma which is consistent with those of the granodiorite and monzogranite porphyry. The granite porphyry is high-Si, K-enriched, and weakly peraluminous, shows distinctly Ba-, Nb-, Sr-, P-, and Ti-depleted trace element patterns and rightward-sloping REE patterns with negative Eu anomalies, indicating fractional crystallization of feldspar, biotite, apatite, and Ti-Fe oxide minerals, etc. The granite porphyry has whole-rock (87Sr/86Sr)i , εNd(t), εHf(t), and zircon εHf(t) values of 0.711329-0.711726, -5.3 to -4.9, -4.6 to -4.2, and mainly -6.0 to -3.0, respectively, suggesting that its source is dominated by ancient crustal materials. Compared with the granodiorite and monzogranite porphyry, the granite porphyry exhibits higher HFSE, ΣREE contents, AMF values, Sr/V ratios and lower Mg# values, Ti/Zr ratios, whole-rock εHf(t) values, implying that it was derived from a more felsic source and is the product of partial melting of ancient metasediments. Compared with the monzogranite porphyry, the granite porphyry displays higher SiO2 contents, (Na2O+K2O)/CaO, Na2O/CaO, Ba/Sr, Rb/Sr ratios and lower CaO, MgO, TiO2, P2O5 contents, δEu values, manifesting that it has experienced stronger magmatic fractionation. The barren granite porphyry is reflective of a W-poor source, while the source of the granodiorite and monzogranite porphyry is relatively W-rich. Both the W-rich source and magmatic fractionation facilitate the formation of t he Yangchuling tungsten deposit.

Key words: Zircon U-Pb dating, Sr-Nd-Hf isotopes, petrogenesis, granite source, Yangchuling granite porphyry, northern Jiangxi

中图分类号: