欢迎访问《高校地质学报》官方网站,今天是
分享到:

高校地质学报 ›› 2023, Vol. 29 ›› Issue (3): 372-381.DOI: 10.16108/j.issn1006-7493.2022068

• 固体地球科学文本挖掘和知识图谱专栏 特邀主编:马 超 诸云强 闾海荣 胡修棉 • 上一篇    下一篇

知识图谱优化卡尔曼滤波预测库岸滑坡位移

贺汪延1,张 巍1*,李厚芝2,潘 波1,邓 禄1,朱鸿鹄1,施 斌1   

  1. 1. 南京大学 地球科学与工程学院,南京 210023;
    2. 中国地质调查局 探矿工艺研究所,成都 611734
  • 出版日期:2023-06-20 发布日期:2023-06-20

Deformation Prediction of Reservoir Landslides Using Knowledge Graph Optimized Kalman Filter

HE Wangyan1,ZHANG Wei1*,LI Houzhi2,PAN Bo1,DENG Lu1,ZHU Honghu1,SHI Bin1   

  1. 1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;
    2. Institute of Exploration Technology, China Geological Survey, Chengdu 611734, China
  • Online:2023-06-20 Published:2023-06-20

摘要: 中国三峡库区库岸滑坡灾害频发,预测库岸滑坡位移是降低风险的重要措施之一。 文章构建了库岸滑坡中文知识图谱,提出了知识图谱优化卡尔曼滤波预测库岸滑坡位移模型KG-MTKF。以三峡库区奉节县新铺滑坡为例,采用现场监测数据验证了模型有效性。结果表明,与监测数据系列相比,多因素卡尔曼滤波模型(MT-KF)和知识图谱优化卡尔曼滤波模型(KG-MTKF)用于预测库岸滑坡时,在稳定变形阶段均表现出良好的一致性;在滑坡变形的初始阶段和阶跃段,KGMTKF模型预测精度更高。初始段两种模型存在误差,主要由于滑坡初期变形值较小、系统噪声显著所导致。在阶跃段、平稳段与整个监测周期中,两种模型的误差都较小,且KG-MTKF模型的预测精度显著高于MT-KF模型。对于新铺滑坡这类非线性动力系统,KG-MTKF预测模型在不同位置与变形阶段均能保持高精度与强鲁棒性。

关键词: 库岸滑坡, 位移预测, 知识图谱, 卡尔曼滤波, 预测精度

Abstract: Reservoir landslides occur frequently in the Three Gorges Reservoir area. Predicting the deformation of the landslides is an important measure to reduce the risk. This paper constructs a Chinese reservoir landslide knowledge graph combined with multivariate Taylor series Kalman filter and proposes a knowledge graph optimized Kalman filter model KG-MTKF. Taking the
Xinpu landslide in Fengjie County in the Three Gorges Reservoir area as an example, the effectiveness of the model was verified by using on-site monitoring data. Results show that compared with the monitoring data, the multivariate Taylor series Kalman filter model (MT-KF) and the knowledge graph optimized Kalman filter model (KG-MTKF) show good consistency in the stationary stage when used to predict reservoir landslides. In the initial stage and step-like stage of the landslide deformation, the prediction accuracy of KG-MTKF is higher. The error of the two models in the initial stage is relatively large, which is caused by the small initial deformation value of the landslide and the more significant influence of system noise. The errors of the two models are
relatively small in the step-like stage, the stationary stage, and the entire monitoring cycle, and KG-MTKF has higher accuracy than MT-KF. For nonlinear dynamic systems like Xinpu landslides, the KG-MTKF can maintain high accuracy and strong robustness at different positions and deformation stages.

Key words: reservoir landslide, deformation prediction, knowledge graph, Kalman filter, prediction accurac

中图分类号: