欢迎访问《高校地质学报》官方网站,今天是
分享到:

高校地质学报 ›› 2020, Vol. 26 ›› Issue (1): 2-.DOI: 10.16108/j.issn1006-7493.2019099

• • 上一篇    下一篇

地球科学知识图谱的构建与展望

齐浩,董少春,张丽丽,胡欢,樊隽轩   

  1. 1. 南京大学地球科学与工程学院,南京210023;
    2. 中国科学院计算机网络信息中心,北京100190
  • 出版日期:2020-02-20 发布日期:2020-03-05

Construction of Earth Science Knowledge Graph and Its Future Perspectives

QI Hao,DONG Shaochun,ZHANG Lili,HU Huan,FAN Junxuan   

  1. 1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;
    2. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
  • Online:2020-02-20 Published:2020-03-05

摘要: 大数据为地球科学研究带来了新的思路和挑战。但由于存在描述规范不统一、共享机制不明、语义异构等问题,在数据集成、共享与复用等方面存在较大困难,使得大数据的众多优势在地球科学相关研究中难以充分发挥。知识图谱能够准确、清晰地表达概念及其相互之间的复杂语义关系,为机器所理解,是实现语义翻译、数据融合和复用的关键技术。文章对地球科学知识图谱的内涵和特点进行了深入的分析,归纳了地球科学知识图谱的主要构建方法,梳理了数据字典、知识体系和知识图谱之间的关系,对与地球科学知识图谱构建相关的专题数据库和领域本体的建设现状进行了回顾,指出了地球科学知识图谱构建中存在的主要问题,并阐述了地球科学知识图谱的应用前景,以期推动和完善地球科学知识图谱的建设和应用。

关键词: 地球科学, 知识图谱, 知识体系, 大数据, 人工智能

Abstract: Big data have brought innovations as well as challenges to Earth science research. However, due to inconsistent data description standards, unclear data sharing mechanism and significant semantic heterogeneity, there are significant difficulties existed in big data integration, sharing and reuse in Earth science research. The knowledge graph can be used to explicitly represent concepts and their complex semantic relationships in a machine-understandable way. Therefore, it has been widely applied for semantic translation, data integration and data reuse. In order to establish Earth science knowledge graph, the current paper analyzes the characteristics of the existing knowledge graphs and investigates the main construction methods. Relationships of data dictionary, knowledge system and knowledge graph are also illustrated and analyzed. Current Earth science thematic databases and domain ontologies have also been reviewed, and future perspectives on Earth science knowledge graph applications are provided.

Key words: Earth science, knowledge graph, knowledge system, big data, artificial intelligence

中图分类号: