Welcome to Geological Journal of China Universities ! Today is
Share:

Most Download articles

    Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month| Most Downloaded in Recent Year|

    Most Downloaded in Recent Month
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Types and Characteristics of Geoheritage Resources in the Shungeng Mountain, Huainan, Anhui Province
    ZHANG Zikang, GU Chengchuan, WU Jiwen, ZHAO Ming, ZHAN Run, SHAO Qingqing, ZHANG Yuanyuan
    Geological Journal of China Universities    2024, 30 (01): 89-99.   DOI: 10.16108/j.issn1006-7493.2022063
    Abstract144)      PDF (4598KB)(487)       Save
    The Shungeng Mountain in Huainan, Anhui Province, is tectonically located in the southern thrust-napped belt of the Huainan Coalfield within the North China Craton (NCC) and hosts many natural and artificial exhumed geoheritages. According to the field geological survey, 62 major geoheritage sites have been identified in the Shungeng Mountain, which can be divided into 3 major categories, 8 categories and 14 subcategories. Among them, typical Cambrian-Ordovician sections of the NCC, karst topography, fault structures and mining heritages are well developed and are of high scientific research and ornamental value. Based on the previous studies, the genesis and regional geological background of these geoheritages in the Shungeng Mountain are discussed, which provide a theoretical basis for the proper exploitation of the geoheritage resources. In light of the problems existing in the protection and exploitation of geoheritage resources in the Shungeng Mountain, this paper puts forward suggestions for long -term planning.
    Related Articles | Metrics
    Overview of the Application and Prospect of Common Chemical Weathering Indices
    LI Xulong, ZHANG Xia, LIN Chunming, HUANG Shuya, LI Xin
    Geological Journal of China Universities    2022, 28 (1): 51-63.   DOI: 10.16108/j.issn1006-7493.2020118
    Abstract4723)      PDF (1109KB)(4713)       Save
    Common chemical weathering indices such as the Weathering Index of Parker (WIP), the Chemical Index of Alteration (CIA), the Index of Compositional Variability (ICV), CIX index and αAlE are often used to evaluate the chemical weathering intensity of source areas. But the factors which controlling the above chemical weathering indices should be considered, otherwise the results of the weathering evaluation will be distorted. This paper argues that the geological survey of source area should be known when chemical weathering indices are used to study the chemical weathering process. The selection of fine sediments or suspended matter can weaken the influence of grain size on chemical weathering indices. The impurities in the sediments are removed by acid treatment. Then, the Sc/Th-CIA diagram was used to reflect the material source information, Th/SC-Zr/Sc diagram was used to further distinguish the control effect of sedimentary differentiation and sedimentary recirculation, and then the samples with ICV value less than 1 were selected to eliminate the interference of recirculation. The A-CN-K diagram or the formula proposed by Panahi (2000) were used to correct the potassium metasomatism, and the strength of chemical weathering of source rocks was evaluated by CIA eventually. To ensure that the calculation of chemical weathering indices can accurately reflect the weathering situation of the source area, SPSS software can be used to analyze the proportion of some factors which affecting the CIA to construct characteristic weathering index of the study area.
    Related Articles | Metrics
    Oceanic Lithium Cycling and Implications for Carbon Cycle
    CAO Cheng
    Geological Journal of China Universities    2024, 30 (03): 269-287.   DOI: 10.16108/j.issn1006-7493.2024022
    Abstract47)      PDF (3114KB)(101)       Save
    How the carbon cycle influences the atmospheric carbon dioxide level is of a major concern for Earth’s habitability.The oceanic lithium (Li) cycle can be used to trace carbon cycle because both cycles are controlled by chemical weathering,
    hydrothermal-seafloor interaction, and marine clay authigenesis which also known as reverse weathering. The variations in
    seawater Li isotope compositions posit changes in the sink and source processes such as continental weathering intensity and/or rate as well as reverse weathering rate. This paper reviews the global cycle of oceanic lithium and the mass balance for seawater lithium isotopes, focusing on the present-day fluxes and associated isotope fractionation mechanisms. Challenges still remain to better constrain the budgets as well as isotope fractionation factor especially in hydrothermal alteration and reverse weathering. The review also extends to the use of seawater li isotope records in tracing carbon cycle during climate events and critical time periods in the earth history. Collectively, this review highlights the potential as well as limitations of utilizing seawater Li isotope records to trace global carbon cycle in deep time. 
    Related Articles | Metrics
    Research Progress and Prospect of the Gangdese Magmatic Belt in Southern Tibet
    MENG Yuanku, YUAN Haoqi, WEI Youqing, ZHANG Shukai, LIU Jinqing
    Geological Journal of China Universities    2022, 28 (1): 1-31.   DOI: 10.16108/j.issn1006-7493.2020057
    Abstract1685)      PDF (2414KB)(1269)       Save
    The Gangdese magmatic belt is the product of the northward subduction of the Neo-Tethys oceanic lithosphere beneath the Lhasa terrane and subsequent India-Asia collision. The Gangdese magmatic arc belongs to the typical continental magmatic belt and is the target area for studying plate accretion, crustal growth and reworking and collisional orogeny. Numerous lines of evidence indicate that the Neo-Tethys oceanic lithosphere experienced four distinct stages of evolution: the early-stage subduction (>152 Ma), late-stage subduction (100 to 65 Ma), main-collisional (55 to 40 Ma), and post-collision extentional stages (23 Ma to present). Multiple studies were carried out in the Gangdese belt and much progress has been made during past decades. However, the formation and evolution of the Neo-Tethys Ocean and magma source of igneous rocks are still debated, especially the detailed petrogenetic dynamic processes. This paper reviews the evolution history and tectonic background, and then summarizes related

    scientific problems from thirteen aspects. It is shown that the Gangdese magmatic belt is a typical magmatism-tectonismmineralization-deformational metamorphism belt and experienced multi-stage evolution processes rather than a simple
    continental magmatic arc aggregated in the Lhasa terrane. The review shows that (1) the Gangdese magmatic belt is a natural
    laboratory for studying the evolution history of the Neo-Tethys, and provides better constraints on the styles of the subducting
    slab. (2) The different-stage granitoid stocks and batholiths might be formed by multiple additions and incremental assembly of
    magmas over a span of millions of years or even longer. Therefore, we should use a mush model to reconstruct petrogenesis and
    petrogenetic secnarios of granitoid rocks in detail. (3) The mantle nature of the Gangdese region shows complicated features that
    are characterized by geochemical heterogeneity along the arc strike direction. (4) The reversed isotopes exist in the Gangdese belt, probably indicating an ancient nucleus. (5) The Gangdese belt is tilting and has different crustal compositions that are characterized by lower crustal compositions in the eastern segment and middle-upper crustal compositions in the middle-western segment. Crustal tilting of the Gangdese region suggests a differential and imbalanced exhumation process. (6) At present, numerous studies are focused on igneous rocks with methods mainly including radioactive Sr-Nd-Hf isotopes, whereas non-traditional stable isotopes (Mg-O-Li-B-Mo) are rarely reported. In addition, research topics are mainly associated with petrogenesis and geochronology, but few studies focus on the magma emplacement and post-magmatic deformation and uplifting-denudation processes. (7) Research in structural geology of the area is few and usually tectonic evolution is inferred from magmatic evolution in the Gangdese belt, southern Tibet. Finally, we also provide future prospects based on the current research status of the Gangdese magmatic belt in southern Tibet.

    Related Articles | Metrics
    Changes in Oceanic Ba Cycle Driven by the Neoproterozoic Oxygenation Event
    WEI Wei, SUI Peishan, CHEN Tingting, HUANG Fang
    Geological Journal of China Universities    2024, 30 (03): 288-296.   DOI: 10.16108/j.issn1006-7493.2024009
    Abstract41)      PDF (946KB)(90)       Save
    The late Neoproterozoic witnessed an increase in the atmospheric and oceanic oxygen levels, namely the Neoproterozoic Oxygenation Event (NOE), likely resulting in the naissance and radiation of metazoans and the establishment of complex ecosystem. Oceanic oxygenation could change oceanic chemistry, such as species and valence states of Fe, C, and S, and the biogeochemical cycle of Ba in the ocean is strongly controlled by the S species and sulfate concentration. This review introduces how the NOE changed the oceanic Ba cycle: (1) Before the NOE, the oceanic sulfate concentration was low and the oceanic Ba cycle was conservative; (2) during the NOE, the oceanic sulfate increase led to excess Ba enrichments in sediments and formation of massive barite deposits; and (3) after the NOE, the ocean kept over-saturated relative to barite until the terminal Paleozoic and the Ba cycle was controlled by biological productivity afterwards. In addition, this review suggests to use Ba isotope system to reconstruct the oceanic Ba concentration, and indirectly to estimate the oceanic sulfate concentration (oxygenation extent) during the late Neoproterozoic.
    Related Articles | Metrics
    Chloritization Sequences in Mudstone during Diagenesis and Its Geological Significance
    FU Yu, DING Qingfeng*, WU Changzhi
    Acta Metallurgica Sinica   
    Mountain Building and Silicate Weathering: A Review and Perspectives
    LI Shilei, CHEN Yang, CHEN Jun
    Geological Journal of China Universities    2024, 30 (03): 336-344.   DOI: 10.16108/j.issn1006-7493.2024024
    Abstract44)      PDF (913KB)(83)       Save
    The relationship between mountain uplift and climate change has been a prominent focus of research in recent decades. Since the emergence of the famous “uplift-weathering “ hypothesis in the 1980s, which suggests that tectonic uplift of
    mountains drives climate change over millions of years through silicate weathering, significant attention has been directed towards this concept. Extensive continental denudation and weathering records have been established to test this hypothesis. Despite the majority of these records aligning with the hypothesis, the presence of alternative interpretations complicates direct hypothesis testing. Consequently, numerous studies have explored contemporary weathering processes to better understand this relationship. However, these studies have unveiled that weathering in mountainous regions is not primarily controlled by physical denudation processes and is unlikely to fluctuate in response to tectonic activities. This challenges the fundamental premise of the “upliftweathering” hypothesis. This paper conducts a comprehensive review and analysis to elucidate the reasons for this contradiction. Moreover, it examines the potential of non-local weathering in floodplains as a novel weathering mechanism to resolve this inconsistency. Additionally, it delves into the opportunities and challenges within the realm of non-local weathering research. 
    Related Articles | Metrics
    Advances in the Study of Biogeochemical Cycles of Phosphorus
    ZHOU Qiang, JIANG Yunbin, HAO Jihua, JI Junfeng, LI Wei
    Geological Journal of China Universities    2021, 27 (2): 183-199.   DOI: 10.16108/j.issn1006-7493.2020002
    Abstract2264)      PDF (2398KB)(2073)       Save
    Phosphorus is an essential element for life and an important limiting factor for food production. The biogeochemical cycles of phosphorus not only regulate marine primary production, but also has an impact on the global climate system; it also determines the formation and distribution of phosphate resources and affects the continuity of life on earth. The current theory of “earth system science” integrates the subsystems of atmosphere, hydrosphere, lithosphere (crust and upper mantle) and biosphere, providing a broader view for studying the global phosphorus cycles. Based on the existing research and combined with the theory of “earth system science”, the following important understandings of the biogeochemical cycles of phosphorus has been obtained: The evolution of phosphorus in geological history determines the current cycle pattern of phosphorus on a global scale (terrestrial ecosystems and marine ecosystems); Human industrial and agricultural activities, as an important geological agent, has changed the biogeochemical cycles of phosphorus, resulted in resource crisis of phosphate depletion and environmental problem of eutrophication of water bodies; The key to solve the resource crisis problem of phosphorus shortage and environmental pollution problem of phosphorus surplus lies in regulating the biogeochemical cycle process that cause these problems. 
    Related Articles | Metrics
    Rate, Mechanism, and Geological and Geochemical Effects of Fungi Oromoting Silicate Mineral Weathering
    LI Zibo, LU Xianca, TENG HuiHenry, LIU Lianwen, QIE Wenkun, PANG Ke, ZHANG Wenxuan, JI Junfeng, CHEN Jun
    Geological Journal of China Universities    2024, 30 (03): 322-335.   DOI: 10.16108/j.issn1006-7493.2024011
    Abstract43)      PDF (2420KB)(76)       Save
    Fungi are widespread and can be found from the Earth’s surface to depths of up to 1.4 km in the continental crust. Based on their ecological habits and nutritional modes, fungi can be categorized as saprotrophic, symbiotic, or parasitic. Hyphae are the basic structural units of fungi. Through their tip-elongated growth and robust metabolic capabilities, fungal hyphae play a unique role in the weathering of silicate minerals, especially those containing nutrient elements. This process regulates essential geological and geochemical processes such as soil formation, mineralization, and the biogeochemical cycling of elements. However, the role of fungi in natural silicate weathering has been relatively overlooked. Our review starts by examining fungal growth patterns, aiming to elucidate their impact on the rate and mechanisms of silicate mineral weathering, as well as their contribution to natural silicate weathering. Through a literature review and in the context of global change, we propose key areas of focus for future research: (1) further quantifying the contribution of fungi to silicate mineral weathering in natural environments, (2) clarifying the coupling of fungal-promoted silicate mineral weathering with geological and geochemical processes, and (3) leveraging functional fungi to improve the efficiency of terrestrial enhanced silicate weathering for carbon removal. These investigations will deepen our understanding of the role of fungi in key surface processes, provide important information for Earth system models (GEOCARB, COPSE, and SCION), enhance the accuracy of predictions regarding the interactions of different spheres in Earth systems, and offer new methods and scientific evidence for the effective carbon sequestration through enhanced silicate weathering.
    Related Articles | Metrics
    Practice and Thoughts on Enhanced Blended Learning Based on Knowledge Graph
    SHI Yukun, XU Shuyi, DONG Shaochun
    Geological Journal of China Universities    2022, 28 (3): 387-393.   DOI: 10.16108/j.issn1006-7493.2021085
    Abstract1085)      PDF (2385KB)(550)       Save
    With the rapid development of the internet and information technology, online and offline blended learning has been widely used. Blended learning is a student-centered strategy that focuses on learners’ abilities of self-regulated learning, collaborative learning and personalized learning and has become a creative learning model for higher education. However, the ability to process, sort, and integrate knowledge that students currently demonstrate under such model is obviously far from sufficient, so is their skill to establish a complete knowledge system. As a result, more guidance from the instructors is urgently needed. The current paper analyzes the advantages and disadvantages of blended learning and introduces the concept of knowledge graph in the field of artificial intelligence as a new element to strengthen the self-regulated learning of students, thereby constructing an enhanced blended learning pedagogy based on knowledge graph. This pedagogy was put into practice in the course of Invertebrate Paleontology at Nanjing University in 2020, which has further demonstrated its potential in improving students’ ability of self-regulated learning.
    Related Articles | Metrics
    Predevonian Tectonic Evolution of South China: from Cathaysian Block to Caledonian Period Folded Orogenic Belt
    SHU Liang-shu
    J4   
    Abstract2200)      PDF (501KB)(4463)       Save
    The interpretation of Predevonian tectonics of South China is controversial long time both on its age and distribution. Based on the middle-high grade metamorphic rocks, ductile slipping rheologic structures exposed in the the Zhejiang- Fujian-Jiangxi-Guangdong domain and high quality dating data published recently, the author believes that an ancient continental block existed certainly in South China, which is composed of Proterozoic schist, gneiss and migmatite with an oldest age of 2 Ga, their protolites are clastic rocks, volcanic rocks and plutons. This old land is temporarily called as Cathaysian Continental Block which is limited in the domain between Shaoxing-Jiangshan-Pingxiang fault and Zhenghe-Dapu fault, and its scope is less than that defined by Grabau. During 800-900 Ma, following the closure of paleo-South China ocean, Cathaysian block collided with Yangzi block and then became a part of Rodinia supercontinent. Not long time after converging, by affection of breakup of Rodinia supercontinent, proto-Cathaysian continental block was split into three sub-blocks, namely the southeastern Zhejiang-northwestern Fujian, the central-southern Jiangxi and the Yunkaidashan, and several rifts or sea channels occurred among them. From Early Sinian to Late Ordovician, these sea channels were expanded and were filled by 10000-20000 m thick clastic rocks (containing limestone) and turbidites. However coeval ophiolite and volcanic rocks are absent, implying extended fault did not reach to upper mantle. New geochronological results indicate that the ophiolite and volcanic rocks in the study areas, which were described as Early Paleozoic by previous researchers, yielded pre-Sinian ages, concentrating mainly between 800 Ma and 900 Ma. Thus, the previous Early Paleozoic tectonic framework needs to be re-constructed. In Silurian, a strong tectono-thermal event took place in South China, causing closure of Sinian-Early Paleozoic sea channels and folding-uplifting of mega-thick sediments. The South China Caledonian fold and orogenic belt was formed on the Proterozoic metamorphic basement. In the study area, folding deformation and ductile slipping rheology are very common, including thrust and strike-slip deformation, the peak period of deformation is 420-400 Ma. At the same time, a violent granitic magmatism was started, forming numerous strongly peraluminous S-type granites with A/CNK (molar Al2O3/[CaO + Na2O + K2O]) > 1.1, and I-type granitoids is rare. Peak period of granitic magmatism took place in the 430-400 Ma. Then, the whole South China Caledonian folded geological bodies were overlain unconformably by Late Devonian conglomerate and coarse sandstone, indicating termination of folding and orogeny. From Late Devonian, a united paleo-geographic and sedimentary environment occurred really in the study domain and its neighboring areas.
    Related Articles | Metrics
    Petrogenesis of Ophiolite-type Chromite Deposits in China and Some New Perspectives
    HU Zhenxing, NIU Yaoling, LIU Yi, ZHANG Guorui, SUN Wenli, MA Yuxin
    J4    2014, 20 (1): 9-.  
    Abstract966)      PDF (1391KB)(2158)       Save
    Ophiolites of varying ages are widespread in China, some of which contain chromite deposites of industrial value. However, compared with some of the world’s large ophiolite chromite deposites (e.g., Kempirsai, Bulquiza, Guleman), the Chinese chromite deposits are small (e.g., Sartohay, Dongqiao, Luobusa). Recent research recognizes that most ophiolites with significant chromite reserves are all formed in a surpasubduction zone environment. Melt-rock interaction is a popular interpretation for the origin of podiform chromite deposits, but the actual mechanism in this model for chromite enrichment remains unclear. It remains the primary task to understand process or processes of chromium enrichment towards the formation of chromite deposits. Is the formation of chromium-rich melts necessary? If so, when, where, how, and under what conditions could this take place? These are additional processes beyond the well-understood aspects of the petrogenesis that need to research towards an effective chromite mineralization model.
    Related Articles | Metrics
    Cited: Baidu(3)
    The Petrogenesis of Baishuizhai Granitic Pluton and Its Significance to Uranium Mineralization in the Xiazhuang Area, Guangdong Province
    LI Kun, CHEN Weifeng, GAO Shuang, SHEN Weizhou, HUANG Guolong, LIU Wenquan, FU Shuncheng, LING Hongfei
    Geological Journal of China Universities    2023, 29 (4): 497-513.   DOI: 10.16108/j.issn1006-7493.2021117
    Abstract370)      PDF (2375KB)(678)       Save
    The Baishuizhai pluton is one of the main ore-bearing wall rocks of the Zutongjian uranium deposit in the northwestern part of the Xiazhuang granite-related uranium ore filed, yet its petrogenetic mechanisms and its relationship with uranium mineralization are still unclear. Thus, in this study, we present zircon SHRIMP U-Pb ages, whole-rocks and mineral geochemical data for the Baishuizhai granite. Field and petrographic investigations show that the Baishuizhai granitic pluton was emplaced into the Xiazhuang granitic batholith, mainly composed of fine-grained two-mica granite and muscovite granite, and the zircon SHRIMP U-Pb dating reveals that both granites were formed during the Indochina period with ages of 229.4 Ma and 231.8 Ma, respectively. They show typical peraluminous S-type granitic geochemical characteristics that are high SiO 2 contents, total alkalis contents and ACNK values ( ≥ 1.1), low FeOt+MgO+TiO 2 contents and P 2O 5 contents, enriched in Rb, Th and U, depleted in Ba, Sr, P and Ti, and enriched in aluminum-rich minerals. Compared with the Xiazhuang granite, both types of granites in the Baishuizhai pluton show enriched in inherited zircon, higher SiO 2 contents and Rb/Sr ratios, but lower FeOt+MgO+TiO 2 contents, P 2O 5 contents, Zr/Hf ratios, and Fe 2+/(Fe 2++Mg) ratios of biotites, indicating that they were derived from low partial melting of reducing material-rich feldspathic meta-pelites, and are not formed by the differentiation evolution of the parent magma of the mafic meta-pelites-derived Xiazhuang granite. Furthermore, compared with the two-mica granite, the muscovite granite display significant tetrad REE patterns, lower REE, Zr/Hf ratios and Eu/Eu* values, indicating that an interaction of F-rich fluids with the magma occurred in the formation of the muscovite granite. Both types of granites in the Baishuizhai granitic pluton are enriched in uranium and can be important uranium-bearing granites in the region. Relative to the 2-mica granite in the Baishuizhai pluton, the muscovite granite is more enriched in uranium and more favorable to be uranium source rocks for hydrothermal uranium mineralization.

    Related Articles | Metrics
    Enzyme-induced Calcium Carbonate Precipitation (EICP) and Its Application in Geotechnical Engineering
    CAO Guanghui, LIU Shiyu, YU Jin, CAI Yanyan, HU Zhou, MAO Kunhai
    Geological Journal of China Universities    2021, 27 (6): 754-768.   DOI: 10.16108/j.issn1006-7493.2020200
    Abstract2193)      PDF (4975KB)(1567)       Save
    The technique of improving soil by enzyme-induced calcium carbonate precipitation is called EICP, which has attracted more and more attention over the past decade due to its wide application. The article describes the mechanism of EICP and summarizes the extraction methods of plant urease and bacterial urease. In addition, the influence of factors such as urease, calcium source, urea, skimmed milk powder, temperature and pH on the cementing effects of EICP is explored. Furthermore, methods for testing the strength, calcium carbonate content, microstructure and composition of EICP reinforced samples are summarized, and the application of EICP in geotechnical engineering is evaluated. The purpose of this article is to summarize the current status of EICP research and potential problems that need to be overcome in future research.
    Related Articles | Metrics
    EPMA Simultaneous Determination of An Element by Multi-spectrometer: A Case Study of the Determination of Al and Ti Contents in Quartz
    CUI Jiqiang, GUO Shengbin, ZHANG Ruoxi, XIE Jing, YANG Shuiyuan
    Geological Journal of China Universities    2021, 27 (3): 340-348.   DOI: 10.16108/j.issn1006-7493.2021035
    Abstract463)      PDF (1379KB)(565)       Save
    Electron probe microanalysis (EPMA) is a method for in-situ analysis of major element contents in minerals. However, it is a challenge to improve precision and accuracy for the analysis of trace elements by EPMA. Changing accelerating voltage, increasing beam current, and increasing counting time are the common methods to improve the precision. However, these methods are easy to destroy the samples and cause element migration, resulting in the inaccuracy of the analytical results. Increasing the counting time will also reduce the analytical efficiency. In this paper, a method of simultaneous determination of an element by multi-spectrometer is proposed to improve the intensity of characteristic X-ray. In this method, multi-spectrometer is used to measure the characteristic X-ray intensity of an element simultaneously. The total characteristic X-ray intensity of standard and unknow are obtained by multi-spectrometer. Then, combined the content of the element in the standard, the content of the element in unknows can be calculated. This method can significantly improve the characteristic

    X-ray intensity, leading to high precision and low detection limit. In this study, the contents of Al and Ti in a reference quartz standard were measured by the method of simultaneous determination of an element by multi-spectrometer, to verify the application of this method in trace element analysis. Two wavelength dispersive spectrometer with one TAP crystal and one TAPL crystal were used to measure Al simultaneously, and three wavelength dispersive spectrometer with three PETL crystals were used to measure Ti simultaneously. The multipoint background method, and the condition of 20 kV accelerating voltage, 500 nA beam current, and 20 μm beam diameter were used. The detection limit of Al and Ti in this study were 2.6×10-6(3σ) and 2.1×10-6(3σ), respectively. The analyses result of Al and Ti in this reference standard were
    163.8×10-6±5.8×10-6 (3σ) and 56.5×10-6±2.0×10-6 (3σ) respectively, which are all close to the reference values (154×10-6±15×10-6 for Al and 57×10-6±4×10-6 for Ti), and show a good long-term stability.

    Related Articles | Metrics
    Progress of Methods for Assessing CO 2 Mineralization Storage Potential in Basalt
    GAO Zhihao, XIA Changyou, LIAO Songlin, YU Xiaojie, LIU Muxin, LI Pengchun, LIANG Xi, DAI Qing, HUANG Xinwo
    Geological Journal of China Universities    2023, 29 (1): 66-75.   DOI: 10.16108/j.issn1006-7493.2022099
    Abstract2227)      PDF (1109KB)(797)       Save
    CO 2 geological storage is an important technology to reduce CO 2 emissions, which can safely store CO 2 in geological formations for millions of years. Conventional CO 2 storage reservoirs include deep saline aquifers and depleted oil and gas reservoirs. Basalt is a new type of CO 2 storage reservoir that has been attracting attention in recent years. CO 2 storage in basalt would increase the technical method and potential of CO 2 geological storage. Storage potential assessment is one of the fundamental works of CO 2 geological storage study. This paper systematically examines the current methods for assessing the storage potential of CO 2 in basaltic rocks, and analyzes the principles and application scenarios of various methods. Then, the study takes the basalt of Icelandic Active Rift zone as an example to compare each of the methods. The study suggests that the current CO 2 mineralization storage potential assessment methods generally include three categories: ① Unit rock storage potential assessment method, which evaluates carbon sequestration potential based on the reaction volume or area of rocks; ② Mineral replacement storage potential assessment method: based on the volume of minerals that can react with CO 2 in basalts. ③Pore filling storage potential assessment method, which evaluates the proportion of secondary minerals that can fill reservoirs’ pore space after CO 2 mineralization. The authors note that the first method requires special experimental analysis, making it more challenging, the second method is more appropriat for basalts with high porosity and low reactive mineral content, while the third method is more suitable for basqlts with low porosity and high reactive mineral content.
    Related Articles | Metrics
    Deformation Prediction of Reservoir Landslides Using Knowledge Graph Optimized Kalman Filter
    HE Wangyan, ZHANG Wei, LI Houzhi, PAN Bo, DENG Lu, ZHU Honghu, SHI Bin
    Geological Journal of China Universities    2023, 29 (3): 372-381.   DOI: 10.16108/j.issn1006-7493.2022068
    Abstract913)      PDF (3065KB)(466)       Save
    Reservoir landslides occur frequently in the Three Gorges Reservoir area. Predicting the deformation of the landslides is an important measure to reduce the risk. This paper constructs a Chinese reservoir landslide knowledge graph combined with multivariate Taylor series Kalman filter and proposes a knowledge graph optimized Kalman filter model KG-MTKF. Taking the
    Xinpu landslide in Fengjie County in the Three Gorges Reservoir area as an example, the effectiveness of the model was verified by using on-site monitoring data. Results show that compared with the monitoring data, the multivariate Taylor series Kalman filter model (MT-KF) and the knowledge graph optimized Kalman filter model (KG-MTKF) show good consistency in the stationary stage when used to predict reservoir landslides. In the initial stage and step-like stage of the landslide deformation, the prediction accuracy of KG-MTKF is higher. The error of the two models in the initial stage is relatively large, which is caused by the small initial deformation value of the landslide and the more significant influence of system noise. The errors of the two models are
    relatively small in the step-like stage, the stationary stage, and the entire monitoring cycle, and KG-MTKF has higher accuracy than MT-KF. For nonlinear dynamic systems like Xinpu landslides, the KG-MTKF can maintain high accuracy and strong robustness at different positions and deformation stages.
    Related Articles | Metrics
    Zinc Isotopes in Environmental Geochemistry: A Review
    CHENG Wenhan, WU Meng, ZHAO Yanli, ZHAO Junzhe
    Geological Journal of China Universities    2024, 30 (03): 312-321.   DOI: 10.16108/j.issn1006-7493.2024036
    Abstract45)      PDF (827KB)(58)       Save
    Zinc is one of the essential trace elements for life activities, but in excess, it can cause environmental pollution, ecological toxicity, and harm to human health. Therefore, the study of the environmental geochemical behavior of zinc is the basis for the scientific and rational use of zinc, and it is also a research hotspot in related fields. Zinc has five stable isotopes, and the
    isotopic composition of zinc varies from different sources. The determination of zinc isotope composition in different  environmental samples provides a new means for studying the environmental geochemistry of zinc. In recent years, with the development of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS), the study of zinc isotope environmental geochemistry has covered chemical weathering, pollution tracing, paleoclimate reconstruction, and biological processes, and new research fields are constantly expanding. The article provides a detailed overview of zinc isotope analysis methods and their current research status in environmental geochemistry, and looks forward to the future development of zinc isotope environmental geochemistry, in order to promote further development in this field.
    Related Articles | Metrics
    Comparison of Gravel Layers along the Yangtze River between Yichang and Wuhan
    WANG Heyuan, WANG Zekun, GU Siying, YANG Shuoxuan, ZHAO Ziyao, CHEN Xu
    Geological Journal of China Universities    2024, 30 (01): 47-55.   DOI: 10.16108/j.issn1006-7493.2022091
    Abstract125)      PDF (2101KB)(260)       Save
    Several thick gravel layers are widely distributed in the middle reaches of the Yangtze River, providing useful clues for tracking the evolution of the Yangtze River. Previous studies mainly focused on the chronologies and sedimentary characteristics of gravel layers in local sites, while comparison of gravel layers among different regions has not been extensively investigated. In this study, eleven profiles of gravel layers in Yichang and Wuhan were explored, the morphology and lithology of 1616 gravels were analyzed. Furthermore, geochemical composition of silty sediments intermixed in gravel layers were measured in order to explore the provenance of the sediments, in combination with regional geological conditions. The results show that the dominant inclinations of gravels in the gravel layers of Yichang and Wuhan are different. Gravels in the Yichang gravel layers mainly consist of granite, sandstone, conglomerate and some siliceous rocks. Gravels in Wuhan are dominated by quartzite, with a small amount of flint. Silty sediments in the gravel layers of Yichang are relatively enriched in Ca and Sr, while those in Wuhan are relatively enriched in Fe and Al. Comparison of gravels and silty sediments in the two regions shows that the provenances of gravel layers in the two regions are different. Detritus from the upper reaches of the Yangtze River are important sources of the gravel layers in Yichang, while the gravel layers in Wuhan are sourced from the Dabie Mountains. The results of this study provide new evidence for improving our understanding of the provenances of gravel layers in the middle reaches of the Yangtze River.
    Related Articles | Metrics
    Analysis and Implication of the Geological Big Data Management in Developed Countries: Take USA, UK, Australia and Canada as Example
    LIU Wei
    Geological Journal of China Universities    2022, 28 (2): 274-286.   DOI: 10.16108/j.issn1006-7493.2020103
    Abstract594)      PDF (805KB)(487)       Save
    The scientific data is an important national strategic resource, and data sharing is one of the means of effective exploitation and utilization on this resource. It is also an important basis for the transformation of current scientific research paradigm to data intensive. With the deep integration of modern information technology and exploration methods, geological exploration and geoscience research are being pushed into the era of Big Data, and it is urgent to conduct scientific management from the macro level. The developed countries in Europe and the United States have promoted the effective implementation of their own geological big data management by issuing policies and laying data infrastructure. In this paper, it investigates the data management work of the Geological Survey in the United States, Britain, Australia and Canada, and introduces and analyzes the status quo of the data management scope which including data policies, strategic plans, important databases and main data tools. Some Suggestions on data management in geological survey industry in China are put forward as follows: (1) Data management policy should adopt top-down design and implement bottom-up. (2) Open sharing and integrated communication of data is the development trend of global data research institutions in the future. (3) We will vigorously promote the construction of GeoCloud, and implement big data governance in the trinity of big data, artificial intelligence and cloud computing. (4) The construction of data sharing infrastructure should be promoted, and more discourse power should be gained through participating in inter- national governance.

    Related Articles | Metrics
    Grain-size Characteristics and Environmental Implication of Neogene Red Clays in the Chinese Loess Plateau
    LU Keke, CHEN Zhong, YANG Yanpeng, ZHANG Jialin, ZHAO Zhongqiang, XIA Dinghong, NI Chunzhong, SONG Yinxian, ZHANG Shitao
    Geological Journal of China Universities    2023, 29 (5): 713-725.   DOI: 10.16108/j.issn1006-7493.2022020
    Abstract242)      PDF (1237KB)(649)       Save
    The aeolian origin of red clays in the Loess Plateau has been unanimously recognized. The earliest red clay was found in the late Oligocene and early Miocene, indicating that the arid environment had been formed in the inland northwest of China at the end of Paleogene. The grain size characteristics of red clay in the loess plateau show that the average grain size gradually decreases from the north to the south, indicatin g that the initial monsoon system has been established, and the winter wind played an important role in the transport of aeolian dust. The grain size distribution of red clay indiactes that it is composed of two components. The coarse grain (>20 μm) represents those transported by the near surface wind (winter wind), while the fine grain (<5 μm) represents those transported by the upper westerly wind. The grain size composition characteristics of red clays well record the development and change of atmospheric circulation. Since the end of Oligocene, the average grain size and sedimentation rate of red clays in the west of Liupanshan Mountain increased at 21.3-20.2 Ma, 16.0-13.3 Ma and 8.7-6.9 Ma, which may be related to global cooling and the Qinghai-Tibet Plateau uplift, and the 8.7- 6.9 Ma increase was mainly controlled by global cooling. In the red clay section to the east of Liupanshan, the grain size of variation characteristics shows that the grains deposited during 7.6 Ma to 6.2 Ma or to 5.4 Ma is coarse, indicating that the winter monsoon was strong. After that, the average particle size was fine up to 3.6 Ma, and the deposition rate was low, indicating that the winter monsoon was weak climate environment. From 3.6 Ma to 2.6 Ma, most profiles show an increase in mean grain size, an increase in sedimentation rates, and an increase in both winter and summer monsoon, which indicates to the transition to Quaternary glacial period. The development of the Arctic ice sheet and the uplift of the Qinghai-Tibet Plateau may have contributed to these changes.
    Related Articles | Metrics
    Neotectonic Evolution of the Peripheral Zones of the Ordos Basin and Geodynamic Setting
    ZHANG Yue-qiao1, LIAO Chang-zhen2, SHI Wei3, HU Bo1
    J4   
    Abstract2462)      PDF (2747KB)(4584)       Save
    based on satellite imagery interpretation, field structural measurements and morpho-tectonic analysis, this paper makes a brief synthesis on Cenozoic extensional history of the graben systems around the Ordos basin and delimits the lower bound of the initial age, 8 -9 Ma, of Neotectonic era in the peripheral zones of Ordos. Neotectonic evolution has been divided into 3 stages with distinct morpho-tectonic features. An early stage during the Latest Miocene to Early Pliocene was characterized by development of the Red clay basin and by initiation of the Shanxi graben system. The peripheral zones of the Ordos was dominated by transtension. A middle stage during the Late Pliocene and middle Pleistocene experienced multi tectonic events that were characterized by episodic compressive deformation along the SW margin, continued subsidence of the graben system along NW and SE margins, uplift of the Ordos basin and development of erosional valley and river terraces along the Jin-Shan deep incised valley of the Yellow River. The most recent neotectonic stage since the middle to Late Pleistocene was dominated by deformation of transpression and transtension in the peripheral zones of Ordos, with intensification of differential vertical motion and river incision. Fault activities during the neotectonic era include different combination of normal, sinistral and dextral strike-slip and reverse faulting. The Ordos block itself rotates around vertical axis, which was accommodated by normal faulting and crustal extension along the graben system. The episodic evolution of neotectonics in the Ordos regions has been dynamically related to fast northward growth and episodic eastward extrusion of Tibetan Plateau during the Late Cenozoic time
    Related Articles | Metrics
    Cited: Baidu(63)
    High Precision Analysis of Chemical Composition of SPI Monazite Standard on Large Spectrometer of 140 mm Rowland Circle
    HU Huan, WANG Rucheng, XIE Lei, ZHANG Wenlan, TIAN Enrong, XU Yating, FAN Hongrui
    Geological Journal of China Universities    2021, 27 (3): 317-326.   DOI: 10.16108/j.issn1006-7493.2021036
    Abstract405)      PDF (1551KB)(736)       Save
    Monazite is the bearing-LREE (light rare earth elements) phosphate mineral that occurs all types of rocks. It is an essential mineral for understanding the formation processes and U-Pb dating, thus high precision analysis of monazite chemical composition has an important geological significance, and also provides reliable parameters for follow-up studies, such as EMPA CHIME dating and in-situ isotopic microanalysis. EMPA is an in-situ and non-destructive technique with an excellent spatial resolution (~1 μm). Due to that, based on the detailed wavelength scanning for SPI Monazite standard, we focus on discussing the important issues in analytical procedure of monazite chemical composition: accelerate voltage, beam current, time, spectrometer, analysis lines, detected limits, interference factor and standards, and obtain the chemical composition data that are finely consistent with the recommended values of the SPI monazite standard under the optimal analysis conditions. This paper presents the best analytical set-up of JEOL JXA-8530F Plus electron microprobe facility at State key laboratory for mineral deposits research, Nanjing University, particularly establishes the high precision analysis of the trace rare earth elements on large spectrometer of 140 mm Rowland circle. The relative standard deviations (RSD) of all element contents are less than 20% (0.05%-17.75%)and meet the accuracy requirement of integration analysis of monazite composition and geochronology.

    Related Articles | Metrics
    Status and Advances of Research on Caprock Sealing Properties of CO 2 Geological Storage
    CHEN Bowen, WANG Rui, LI Qi, ZHOU Yinbang, TAN Yongsheng, DAI Quanqi, ZHANG Yao
    Geological Journal of China Universities    2023, 29 (1): 85-99.   DOI: 10.16108/j.issn1006-7493.2023010
    Abstract1783)      PDF (6425KB)(769)       Save
    CO 2 Geological storage is one of the key technologies to address global climate changes and reduce greenhouse gas emissions. Large-scale CO 2 injection into the formation is prone to inducing CO 2 leakage problem. In particular, the leakage problem of CO 2 through caprock includes capillary leakage, hydraulic fracture and leakage along pre-existing faults crossing caprock. Therefore, evaluation of caprock seal is crucial for prediction of long-term safety and stability of CO 2 geological storage. This paper provides an overview of the current status of research on sealing mechanisms, influencing factors, and damage modes affecting caprock seal of CO 2 geological storage. It is concluded that caprock seal mechanisms include capillary seal, hydraulic seal, and overpressure seal. The main influencing factors of caprock seal characteristics include caprock lithology, mudrock-sand ratio, caprock mechanical properties, and sequestration pressure. Then, the damage modes of caprock seal during CO 2 injection are illustrated, and some insight into the shortcoming of caprock seal is provided.
    Related Articles | Metrics
    Advance in Laser Raman Spectroscopy Carbon Geothermometer and Its Application in Earth Sciences
    CHEN Yiyi, WANG Bo, LIU Jiashuo, LU Shenghua, COCHELIN Bryan
    Geological Journal of China Universities    2023, 29 (6): 908-923.   DOI: 10.16108/j.issn1006-7493.2021116
    Abstract131)      PDF (1310KB)(409)       Save
    Organic matter is usually enriched in sediments, and will be transformed from disordered carbonaceous material to fully-ordered crystalline graphite, after being buried and heated to some high temperature during metamorphism. The crystalline order is closely corresponding to the certain temperature condition of metamorphism. The Raman spectroscopy (RS) can reflect the vibrational modes of molecules of carbonaceous material (CM), and to reveal the crystalline degrees of graphite, and thus the metamorphic conditions. The RSCM method is an empirical geothermometer by obtaining and analyzing the Raman parameters like band position, peak intensity, band area and FWHM (full width at half maximum) of carbon or graphite grains from a series of metamorphic samples, whose metamorphic temperatures are already known or can be calculated by other methods. A close correlation between the RSCM and peak metamorphic temperature is very well defined, so as to quantitively calculate the peak temperature of the unknown samples during regional or contact metamorphism. Based on the comparisons with the traditional geothermometers, it is suggested that the RSCM is practicable and reliable, and it shows several advantages such as high efficiency, in situ and nondestructive measurements, wide range of temperature detection, high sensitivity to CM inner structures, being free from later retrograde metamorphism, and wide fields of application. Thus, this method is significant for the reconstruction of regional tectonic and thermal evolution, and crustal thermal state. This paper reviews the study history of the RSCM, introduces the theory on CM Raman spectrum band distribution and its relationship with metamorphic temperature, summarizes some representative studies of natural graphitic carbons by Raman spectroscopy in recent years, and its applications in different fields of Earth Sciences. The research foreground of RSCM is finally prospected.

    Related Articles | Metrics
    Evalution of Water in Lunar Interior and Water Ice on Lunar Surface
    WU Yanwei, HE Jiafeng, WANG Guoguang
    Geological Journal of China Universities    2024, 30 (02): 165-177.   DOI: 10.16108/j.issn1006-7493.2023013
    Abstract148)      PDF (2755KB)(128)       Save
    In the process of lunar exploration, water, as the source of life and an important propellant material for future interstellar travel, is one of the most concerned resources. Since United States Apollo and Soviet Union Lunar projects, the paradigm of “no water” on the Moon has been widely accepted for a long time. In this paper, the research progress on lunar interior water and surface water, the origin of lunar water, the evaluation of water resources, and the methods of exploitation and utilization are systematically reviewed. In recent years, the exploration of water resources on the lunar surface and the in-depth study of water content in lunar samples have revealed that the Moon may contain more water than that previously believed. Not only the interior of the Moon contains relatively abundant water, there are also considerable water resources in the polar region of the Moon. The origin of water on the Moon mainly includes original water that was not degassed during formation and differentiation of the Moon, water from asteroids and comets, and water from solar wind hydrogen implantation. It is estimated that the amount of water ice on the lunar surface is about 14.28 billion tons, and the amount of water caused by solar wind implantation on the lunar surface is about 340,000 tons, which will provide important resources for the construction of lunar bases and deep space exploration in the future. At present, a variety of development and utilization schemes have been proposed for the utilization of lunar water resources, including Thermal Mining of Water Ice on the Moon, Lunar Polar Propellant Mining Outpost (LPMO), The Combined System for Drilling and Extracting Lunar Water Ice and so on.
    Related Articles | Metrics
    Advances and Reviews on Coalbed Methane Reservoir Formation in China
    QIN Yong
    J4    2012, 18 (3): 405-.  
    Abstract1303)      PDF (543KB)(2873)       Save

    Advances and Reviews on Coalbed Methane Reservoir Formation in China

    Related Articles | Metrics
    Cited: Baidu(38)
    Predicting Permeability of Porous Media from Pore Structure Features of Slices by Machine Learning
    MENG Yinquan, JIANG Jianguo, WU Jichun
    Geological Journal of China Universities    2024, 30 (01): 1-11.   DOI: 10.16108/j.issn1006-7493.2022088
    Abstract161)      PDF (3148KB)(272)       Save
    Using machine learning models to predict the permeability of porous media is one of the key research directions of current pore-scale models. Since three-dimensional porous media data cannot be directly applied to classical machine learning models, it is necessary to perform feature extraction on the pore s pace structure. Deep learning, as the advancement of classical machine learning models, has achieved many successes in predicting permeability from three-dimensional digital images of porous media, but the computational cost is quite high. This study extracted pore structure features of slices of porous media, converting digital images into multidimensional vectors and serving as input to machine learning models. While reducing the amount of input data and greatly improving the training efficiency, the models maintained excellent prediction performance, where the long short -term memory (LSTM) neural network achieved the best results.
    Related Articles | Metrics
    Laboratory Experiment on Interlayer Interference of Multi-layer Commingling Production of Light Oil in the Bohai Thin Oilfield
    CAI Hui, GUO Shuhao, CHENG Linsong, ZHANG Zhanhua, JIA Pin
    Geological Journal of China Universities    2021, 27 (5): 587-592.   DOI: 10.16108/j.issn1006-7493.2020101
    Abstract407)      PDF (1442KB)(578)       Save
    Due to low viscosity of crude oil and large permeability difference of reservoir, the interlayer interference problem during multi-layer commingling production in thin bedded light oil reservoirs is different from that of heavy oil reservoir. In order to understand the law of this problem and the production strategy can be reasonably formulated, the reservoir porosity and permeability data were made statistic analysis, and the displacement characteristics of single and commingling production under experimental conditions were studied by using two-tube parallel constant-speed displacement experiments with long cores with different permeabilities. The experimental results show that the increasing trend of water content during the displacement of oil by water in cores with different permeabilities is similar, but different from that of heavy oil. The greater the permeability difference, the more serious the interlayer interference. From the seepage mechanism, the influence law of permeability difference on interlayer interference is clarified, providing the theoretical foundation for the dividing and adjustment of reservoir.
    Related Articles | Metrics
    Studies on the Volcanic-Plutonic Connection
    WANG Shuo,WANG Xiaolei,DU Dehong
    Acta Metallurgica Sinica    2020, 26 (5): 497-505.   DOI: 10.16108/j.issn1006-7493.2020014
    Abstract1233)      PDF (1969KB)(707)       Save
    The relationship between volcanic and plutonic rocks has been debated for over a century. The controversy has been focused on the petrogenesis of intermediate to felsic rocks, with two main opinions proposed on the formation of silicic volcanic rocks: (1) they crystallized from the melt extracted from the “crystal mush” of granitic magma; and (2) they don’t have relations with the coeval plutonic rocks but have independent magma formation process. In recent years, with the rapid improvements of high-precision dating methods and the combination of other research methods such as geophysics, people have some new understandings on the genetic relationship between siliceous volcanic and plutonic rocks. The models of magma mush and transcrustal magmatic system have received much attention, but they also resulted in new contradictions and problems. This paper systematically summarizes the volcanic-plutonic connection in terms of different viewpoints, research history, and contradictions, and proposes some research areas for future research on the volcanic-intrusive connection. Generally, the overall geochemical similarities between siliceous volcanic and plutonic rocks displayed by big data do not rule out the existence of geochemical
    differences that confined to “crystal mush” model in a specific area. At the end of the manuscript, it is pointed out that deep exploration, in-situ detailed geochemical analysis experiments, and modeling are expected to make break throughs in the future study of volcanic-plutonic connection. We suggest that the combinations with continental evolution and environmental changes may be important areas for future research on the volcanic-plutonic connection.
    Related Articles | Metrics