Welcome to Geological Journal of China Universities ! Today is
Share:

Most Download articles

    Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

    In last 3 years
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Overview of the Application and Prospect of Common Chemical Weathering Indices
    LI Xulong, ZHANG Xia, LIN Chunming, HUANG Shuya, LI Xin
    Geological Journal of China Universities    2022, 28 (1): 51-63.   DOI: 10.16108/j.issn1006-7493.2020118
    Abstract3309)      PDF (1109KB)(4222)       Save
    Common chemical weathering indices such as the Weathering Index of Parker (WIP), the Chemical Index of Alteration (CIA), the Index of Compositional Variability (ICV), CIX index and αAlE are often used to evaluate the chemical weathering intensity of source areas. But the factors which controlling the above chemical weathering indices should be considered, otherwise the results of the weathering evaluation will be distorted. This paper argues that the geological survey of source area should be known when chemical weathering indices are used to study the chemical weathering process. The selection of fine sediments or suspended matter can weaken the influence of grain size on chemical weathering indices. The impurities in the sediments are removed by acid treatment. Then, the Sc/Th-CIA diagram was used to reflect the material source information, Th/SC-Zr/Sc diagram was used to further distinguish the control effect of sedimentary differentiation and sedimentary recirculation, and then the samples with ICV value less than 1 were selected to eliminate the interference of recirculation. The A-CN-K diagram or the formula proposed by Panahi (2000) were used to correct the potassium metasomatism, and the strength of chemical weathering of source rocks was evaluated by CIA eventually. To ensure that the calculation of chemical weathering indices can accurately reflect the weathering situation of the source area, SPSS software can be used to analyze the proportion of some factors which affecting the CIA to construct characteristic weathering index of the study area.
    Related Articles | Metrics
    Enzyme-induced Calcium Carbonate Precipitation (EICP) and Its Application in Geotechnical Engineering
    CAO Guanghui, LIU Shiyu, YU Jin, CAI Yanyan, HU Zhou, MAO Kunhai
    Geological Journal of China Universities    2021, 27 (6): 754-768.   DOI: 10.16108/j.issn1006-7493.2020200
    Abstract1856)      PDF (4975KB)(1368)       Save
    The technique of improving soil by enzyme-induced calcium carbonate precipitation is called EICP, which has attracted more and more attention over the past decade due to its wide application. The article describes the mechanism of EICP and summarizes the extraction methods of plant urease and bacterial urease. In addition, the influence of factors such as urease, calcium source, urea, skimmed milk powder, temperature and pH on the cementing effects of EICP is explored. Furthermore, methods for testing the strength, calcium carbonate content, microstructure and composition of EICP reinforced samples are summarized, and the application of EICP in geotechnical engineering is evaluated. The purpose of this article is to summarize the current status of EICP research and potential problems that need to be overcome in future research.
    Related Articles | Metrics
    Genetic Types and Accumulation of Crude Oil in the Central Inversion Zone in the Liaoxi Depression, Bohai Sea
    TIAN Derui, NIU Chengmin, WANG Deying, GUO Tao, PAN Wenjing, GUO Longlong
    Geological Journal of China Universities    2021, 27 (4): 444-458.   DOI: 10.16108/j.issn1006-7493.2020093
    Abstract419)      PDF (1211KB)(1109)       Save
    The central inversion zone of the Liaoxi Depression is the enrichment area of high quality light crude oil in the Liaodong Bay exploration area. However, the genetic types, source and accumulation of crude oil have not been systematically studied. Based on the analysis and comparison of the biomarkers, three sets of effective source rocks of the Shahejie Formation were distinguished. The first, third and fourth members of the Shahejie Formation, are obviously different in the source of organic matter and sedimentary environment. It is confirmed that plankton is the main component of organic matter in the three sets of source rocks. The first member of the Shahejie Formation (E2s1) has the highest plankton content and the least terrestrial organic matter input. The content of dinoflagellate in the fourth member of the Shahejie Formation (E2s4) was significantly higher than that in the first and third members of the Shahejie Formation (E2s1, E2s3). Both E2s3 and E2s4 source rocks were deposited in the freshwater and weakly alkaline reducing environment, and the E2s1 source rock was deposited in the brackish to saline alkaline strongly reducing environment. The crude oil found in the central inversion zone can be divided into three source-related types through hierarchical cluster analysis(HCA). The oil-source correlation results show that the type Ⅰ crude oil is the mixed oil originated from the E2s3 and E2s1 source rocks, which is mainly distributed in the middle block and the middle area of the east block on the central inversion zone. The type Ⅱ crude oil is originated from the E2s4 source rocks, which is distributed in the southern area of the east block on the central inversion zone. The type Ⅲ crude oil is the mixed oil originated from the E2s3 and E2s4 source rocks, which is mainly distributed in the west block and the northern area of the east block on the central inversion zone. On this basis,

    the main controlling factors of hydrocarbon accumulation in the central inversion zone of the Liaoxi sag were analyzed. Oil and gas
    reservoirs on the central inversion zone are controlled by multiple factors, including the distribution of effective source rocks and the math of fault and sand bodies.

    Related Articles | Metrics
    Research Progress and Prospect of the Gangdese Magmatic Belt in Southern Tibet
    MENG Yuanku, YUAN Haoqi, WEI Youqing, ZHANG Shukai, LIU Jinqing
    Geological Journal of China Universities    2022, 28 (1): 1-31.   DOI: 10.16108/j.issn1006-7493.2020057
    Abstract649)      PDF (2414KB)(1059)       Save
    The Gangdese magmatic belt is the product of the northward subduction of the Neo-Tethys oceanic lithosphere beneath the Lhasa terrane and subsequent India-Asia collision. The Gangdese magmatic arc belongs to the typical continental magmatic belt and is the target area for studying plate accretion, crustal growth and reworking and collisional orogeny. Numerous lines of evidence indicate that the Neo-Tethys oceanic lithosphere experienced four distinct stages of evolution: the early-stage subduction (>152 Ma), late-stage subduction (100 to 65 Ma), main-collisional (55 to 40 Ma), and post-collision extentional stages (23 Ma to present). Multiple studies were carried out in the Gangdese belt and much progress has been made during past decades. However, the formation and evolution of the Neo-Tethys Ocean and magma source of igneous rocks are still debated, especially the detailed petrogenetic dynamic processes. This paper reviews the evolution history and tectonic background, and then summarizes related

    scientific problems from thirteen aspects. It is shown that the Gangdese magmatic belt is a typical magmatism-tectonismmineralization-deformational metamorphism belt and experienced multi-stage evolution processes rather than a simple
    continental magmatic arc aggregated in the Lhasa terrane. The review shows that (1) the Gangdese magmatic belt is a natural
    laboratory for studying the evolution history of the Neo-Tethys, and provides better constraints on the styles of the subducting
    slab. (2) The different-stage granitoid stocks and batholiths might be formed by multiple additions and incremental assembly of
    magmas over a span of millions of years or even longer. Therefore, we should use a mush model to reconstruct petrogenesis and
    petrogenetic secnarios of granitoid rocks in detail. (3) The mantle nature of the Gangdese region shows complicated features that
    are characterized by geochemical heterogeneity along the arc strike direction. (4) The reversed isotopes exist in the Gangdese belt, probably indicating an ancient nucleus. (5) The Gangdese belt is tilting and has different crustal compositions that are characterized by lower crustal compositions in the eastern segment and middle-upper crustal compositions in the middle-western segment. Crustal tilting of the Gangdese region suggests a differential and imbalanced exhumation process. (6) At present, numerous studies are focused on igneous rocks with methods mainly including radioactive Sr-Nd-Hf isotopes, whereas non-traditional stable isotopes (Mg-O-Li-B-Mo) are rarely reported. In addition, research topics are mainly associated with petrogenesis and geochronology, but few studies focus on the magma emplacement and post-magmatic deformation and uplifting-denudation processes. (7) Research in structural geology of the area is few and usually tectonic evolution is inferred from magmatic evolution in the Gangdese belt, southern Tibet. Finally, we also provide future prospects based on the current research status of the Gangdese magmatic belt in southern Tibet.

    Related Articles | Metrics
    Genesis Process of the Cretaceous Daqushan Pluton in Zhejiang Province: Crystal-Melt Separation and Magmatic Recharge
    HE Chen, XIA Yan, XU Xisheng, QIU Jiansheng, XU Hang, ZHANG Zhi, ZHAO Sidi
    Geological Journal of China Universities    2023, 29 (5): 657-678.   DOI: 10.16108/j.issn1006-7493.2022018
    Abstract1153)      PDF (11167KB)(1043)       Save
    The models of trans-crustal magmatic system and crystal mush provide new insights into the study of Cretaceous magmatism in northeast China. The Daqushan pluton is located in the northeast of coastal Zhejiang and Fujian. It is mainly composed of K-feldspar granite with abundant melanocratic microgranular enclaves (MME) and is locally traversed by several mafic-intermediate dikes. A small outcrop of monzonite is exposed near the Chaotoumen. MME have a fine-grained texture with acicular apatites. Zircon U-Pb dating results show that the rock samples in the Daqushan pluton (including the K-feldspar granite, MME, monzonite, and mafic-intermediate dikes) crystallized at ~100 Ma. The K-feldspar granite are highly silicic (SiO2=68.45%-73.82%). While the miarolitic granite (DQS-7) without MME has the higher silica (76.27%), and its whole-rock geochemical and Sr-Nd isotope compositions are similar to those of coeval high silica granites (SiO2>75%) exposed around the Daqushan pluton. Daqushan K-feldspar granite bearing aggregates of plagioclase and K-feldspar exhibit“complementary”trace element geochemical characteristics with Daqushan miarolite and surrounding high silica granites. Further researches show that the Daqushan K-feldspar granite and miarolite were formed by felsic magma which originated from the partial melting of the ancient crustal basement and was recharged by mantle-derived magma. Such felsic magma underwent fractional crystallization and the extraction of high silica melt. Then, the residual silicic cumulate of the crystal mush and high silica melt crystallized and formed the Daqushan K-feldspar granite, miarolite and the surrounding coeval high silica granites. The mafic dikes of Daqushan are enriched in LILEs and depleted in HFSEs
    and are derived from the partial melting of the enriched mantle metasomatized by subducted dehydration fluids. The results of EPMA analyses indicate that the plagioclase in the K-feldspar granite and MME has a core-mantle-rim texture with low- An in the core (27-36, 25-41) and rim (17-32, 18-26) and relatively high-An in the mantle (28-57, 27-65). Integration of the element geochemical characteristics and Sr-Nd-Hf isotopic results, monzonite and intermediate dikes should be the product of magma mixing of mantle-derived mafic magma and felsic magma, while MME are the product of magma mingling of the two endmembers. The results of the Al-in-hornblende geobarometer show that the crystallization depth of MME is 1.8- 3.0 km, hornblende in monzonite develops core-mantle-rim texture, the crystallization depth of hornblende core and mantle is 17.0-21.2 km, and the depth of hornblende rim is 1.9-4.5 km. Based on the study of the origin and genetic relationships of K-feldspar granite, MME, miarolite, monzonite and mafic-intermediate dikes, and compared with the surrounding coeval high silica granites, this study establishes a model of trans-crustal magmatic systems for Daqushan pluton. The rollback of the subducting paleo-Pacific plate, the back-arc extension in the coastal area and the upwelling of the asthenosphere led to the underplating of the mantle-derived mafic magma, and further induced the partial melting of basement rocks in the lower crust to produce felsic magma. The continuous recharge and heating of mantle-derived magma favor the existence of long-lived melt-bearing regions in magma chambers, promoting magma differentiation and crystal-melt separation and thus forming two magma chambers with depths of 17-21 km and 2-3 km, respectively. K-feldspar granite, high silica granites, monzonite, MME and intermediate-mafic dikes were formed by magma mingling/mixing and crystal-melt separation in two connected magma chambers at different depths.
    Related Articles | Metrics
    A Review of the Establishment Methods of Training Image in Multiple-point Statistics Modeling
    WANG Mingchuan, SHANG Xiaofei, DUAN Taizhong
    Geological Journal of China Universities    2022, 28 (1): 96-103.   DOI: 10.16108/j.issn1006-7493.2020049
    Abstract727)      PDF (1268KB)(835)       Save
    Multiple-point statistics (MPS) modeling has been the research hotspot of reservoir modeling technology in recent years, and its practicability is restricted by training image. The quality of training image determines the accuracy and reliability of MPS modeling, and is a key factor for the successful application of MPS modeling. This study addresses the characteristics and significance of training image, and systematically introduces the establishment methods of training image creation from the definition, usage and instance, etc., including hand drawn, object-based simulation, 3D seismic information extraction or transformation, prototype- ased model, process-based simulation and 2D image method. Then, our study comprehensively compares the data sources, advantages and disadvantages of various training image creation methods, and discusses the problems caused by MPS modeling relying on training images. Combined with reviewing prior works and MPS modeling practice, the research direction of training image and its establishment methods in the future is pointed out, which provides reference for MPS modeling researchers and users, and provides some thoughts for improving MPS modeling methods.
    Related Articles | Metrics
    Bio-geoengineering Technology and the Applications
    TANG Chaosheng, PAN Xiaohua, LYU Chao, DONG Zhihao, LIU Bo, WANG Dianlong, LI Hao, CHENG Yaojia, SHI Bin
    Geological Journal of China Universities    2021, 27 (6): 625-654.   DOI: 10.16108/j.issn1006-7493.2021011
    Abstract822)      PDF (4447KB)(795)       Save
    Bio-geoengineering technology is defined as a technology that using various types of microbial biochemical process to improve the hydro-mechanical behavior of soil and rock, aiming for the prevention and mitigation of engineering geology problems. Previous studies indicate that bio-geoengineering technology is a hot research topic in recent years and has the advantages of low cost, environmental friendliness, low energy consumption and process controllable. It has been recognized as an important development direction of modern engineering geology. Based on research progress on this topic, this paper systematically summarizes the principles and application fields of three representative bio-geoengineering technologies that can be well controlled and efficiently used, including bio-mineralization, bio-film growth and bio-gas production. It focuses on the engineering properties (i.e. mechanical behavior, permeability, and erosion resistance) and the corresponding involved mechanisms of the rock and soil improved by bio-mineralization that have been studied the most and with the broadest application prospects. Moreover, the key factors (i.e. bacteria species, bacterial solution concentration, environmental temperature, pH value, cementation solution composition, soil nature and grouting technology) that affect the improvement effect of bio-mineralization are discussed in depth. In addition, the application status of bio-mineralization in foundation treatment, island and reef construction, wind and sand fixation, soil and water conservation, crack resistance and seepage prevention, cultural relics protection, geological disaster prevention and other fields are introduced in detail. The main challenges of the application of bio-mineralization are listed, and the future research directions on this topic are proposed.

    Related Articles | Metrics
    Review on Application of Microbially Induced Carbonate Precipitation (MICP) for Soil Stabilization
    ZHOU Yingzheng, GUAN Dawei, CHENG Liang
    Geological Journal of China Universities    2021, 27 (6): 697-706.   DOI: 10.16108/j.issn1006-7493.2020116
    Abstract725)      PDF (1454KB)(795)       Save
    Microbial mineralization is a recently developing new branch in engineering of soil improvement that deals with the application of microbiological activity to improve characteristics of soils. One of the most commonly adopted processes to achieve soil bio-cementation is through microbially induced carbonate precipitation (MICP). This technique utilizes the metabolic behavior of urease bacteria to induce calcite that binds the loose soil particles integrally, leading to increased mechanical properties of soils. This paper systematically introduces the study of MICP about mineralization mechanism of urease bacteria, relative treatment methods, influencing factors, derived new technique (EICP) and relative field trials in geotechnical engineering. The practicability of the MICP is summarized. Finally, the challenges and potential solutions of MICP engineering applications in the current research stage are briefly discussed.
    Related Articles | Metrics
    High Precision Analytical Method for Stable Strontium Isotopes
    CHEN Xuqi, ZENG Zhen, YU Huimin, HUANG Fang
    Geological Journal of China Universities    2021, 27 (3): 264-274.   DOI: 10.16108/j.issn1006-7493.2021031
    Abstract1054)      PDF (922KB)(779)       Save
    Because of the development of high-precision stable Sr isotope analytical method, stable Sr isotopes have been paid more attention in recent years. Great progress has been made in studies on supergene geochemistry, paleoenvironment, archaeology, endogenesis, and meteorites. This paper summarizes the key techniques of δ88/86Sr analytical methods. Ion exchange method with Eichrom Sr Specific Resin has been widely used to purify Sr. But this specific resin is expensive and may result in contamination during the chromatographic processes. Thus it could be replaced by cation-exchange resin. MC-ICP-MS and TIMS are the instruments for isotope measurement. Normally, MC-ICP-MS has higher measurement efficiency but slightly lower precision than TIMS. Standard-Sample-Bracketing method, Zr-Empirical-External-Normalization method, and double spike method are used to correct the instrumental mass bias. The Double Spike method may have relatively high measurement precision, but there are only a few studies using this method on MC-ICP-MS. Furthermore, there is no detailed comparison of δ88/86Sr of international standard materials. Therefore, optimizing the analysis process, improving the measurement precision, and more determination of δ88/86Sr of standard materials are necessary for the future studies of stable Sr isotopes.

    Related Articles | Metrics
    Marine Redox Fluctuation during the Early Cambrian Age 10: Evidence from U Isotopes
    QIU Chen, WEI Guangyi, MIN Siyu, CHEN Xi, LING Hongfei
    Geological Journal of China Universities    2022, 28 (1): 40-50.   DOI: 10.16108/j.issn1006-7493.2020038
    Abstract547)      PDF (2251KB)(763)       Save
    The marine animal diversity was generally low during late Cambrian and early Ordovician. Biogeochemical studies suggest that it may have been related with fluctuations in oceanic redox conditions, despite still lack of evidence. Well-preserved marine carbonates could record the geochemical characters of ancient seawater, and their uranium isotope compositions (δ238U) can be used to reconstruct the global oceanic redox conditions. In this study we analyzed the uranium isotope compositions of marine carbonates of the basal Cambrian Stage 10 from Wa’ergang section, South China. Our data show that the δ238U profile has three negative excursions with minima of -0.8‰ , -0.55‰ and -0.60‰ , respectively, which indicates three intervals of oceanic anoxia expansion. Modeling results based on the uranium isotope mass balance model suggest that about 22%, 3.5% and 5% of the global sea-floor were covered by anoxic water during these three intervals, respectively. We speculate that the first anoxic interval may have been related with increase in primary productivity due to enhanced weathering input of nutrients, and the latter two may have been induced by upwelling of deep anoxic water during the transgressions.
    Related Articles | Metrics
    Progress in High Precision Analytical Approaches of Silicon Isotope
    WANG Junlin, WANG Wei, WEI Haizhen
    Geological Journal of China Universities    2021, 27 (3): 275-288.   DOI: 10.16108/j.issn1006-7493.2021033
    Abstract764)      PDF (1355KB)(749)       Save
    With the modification of Alkali fusion method for digesting silicates and the development of the multi-collection inductively coupled plasma mass spectrometer (MC-ICP-MS), the silicon isotopic analysis methods have been significantly improved in recent years. The analytical precision of δ 30Si (2SD) is better than ±0.10‰, compared with ±0.15‰-±0.30‰ by gas mass spectrometer (GS-MS) in earlier studies. It enables us to distinguish the minor fractionation of Si isotopes during the
    high temperature processes; and also avoid using hazardous chemical such as fluoride. For the in situ determination of δ 30Si, the analytical precision of secondary ion mass spectrometry (SIMS) and femtosecond laser ablation (fs LA) also have been modified to be ±0.10‰-±0.22‰. This article reviewed the progress in silicon isotope analysis in the past decades, and discussed the establishment of high precision silicon isotope analysis method under wet plasma condition using MC-ICP-MS. Then we compared the silicon isotopic compositions of standard reference materials in different laboratories, and finally summarized the range of δ 30Si in major geological reservoirs, e.g., BSE, Earth crust and Meteorites.

    Related Articles | Metrics
    LA-ICP-MS Zircon U-Pb Dating, Geochemical Characteristics and Tectonic Significance of Jundong Granites in Northeastern Guangxi
    GAO Aiyang, SHI Yu, LIU Xijun, ZHAO Zengxia, LIU Minghui, HUANG Chunwen,
    Geological Journal of China Universities    2022, 28 (2): 225-239.   DOI: 10.16108/j.issn1006-7493.2021021
    Abstract289)      PDF (5071KB)(713)       Save
    The Jundong granitic pluton is located in the southwest of the Qin-Hang belt, with the rock combination of dioritetonalite-granodiorite. In this study, we present LA-ICP-MS zircon U-Pb ages of granitic rocks from the Jundong pluton, the crystallization age of the Jundong rock body is 423-430 Ma, belonging to the Caledonian period. The rocks have lower SiO contents of 55.47-62.95 wt%. One of the samples belongs to the shoshonite series and the others are high-K calc-alkaline series. The A/CNK values are 0.70-1.18, showing as quasi-aluminous or peraluminous rocks. The rocks are enriched in large ion lithophile elements (LILE, e.g., Rb, Ba, Th and U) and relatively depleted in high field strength elements (HFSE, e.g., Nb, Ta, Sr, P and Ti) relative to primitive mantle. The Jundong granitic pluton are mixing products of different original rock sources and formed in the intracontinental collisional orogenic tectonic environment.
    Related Articles | Metrics
    Research Progress of Bio-cementation for Sand Stabilization and Wind Erosion Control
    HE Jia, WU Min, MENG Hao, QI Yongshuai, GAO Yufeng
    Geological Journal of China Universities    2021, 27 (6): 687-696.   DOI: 10.16108/j.issn1006-7493.2020072
    Abstract772)      PDF (1379KB)(703)       Save
    This paper reviews recent research studies on biological soil cementation methods, or bio-cementation, for sand stabilization and wind erosion control. The biological processes adopted for bio-cementation involve microbially- or enzymeinduce carbonate precipitation (MICP or EICP), and the auxiliary use of biopolymers such as xanthan gum can achieve better soil stabilization effects. In the process of soil wind erosion, in addition to the wind itself, the bombardment of the saltating particles carried by the wind is also a key factor of erosion damage. This has been evidenced in the wind erosion tests of bio-cemented soils. The treatment process of soil bio-cementation for wind erosion control is simple and easy. Using urea and calcium salt as treatment materials, and bacteria or urease as catalytic agents, a single-pass spraying treatment on the soil can obtain a good wind resistance effect. In the laboratory wind resistance tests, the combination of wind erosion rate and threshold detachment velocity is a more reasonable evaluation method for wind erosion. In laboratory and field conditions, the surface penetration test can be a simple and quick method to determine the treatment effect and wind erosion resistance. Current field studies indicate that plants can grow in soil with bio-cemented crust, but their growth is restricted under some adverse conditions. Further studies may concentrate on erosion resistance capability under multiple erosion factors, ecological restoration ability in bio-cemented soil, and construction technologies related to the use of bio-cementation, etc.
    Related Articles | Metrics
    Petrogenesis of Xinmengshan Dacite Porthyry in Changning, Hunan Province: Implications for Relationship of Magmatism and Mineralization
    ZHAO Zengxia, FENG Zuohai, LIU Lei, XIAO Yang
    Geological Journal of China Universities    2022, 28 (2): 153-164.   DOI: 10.16108/j.issn1006-7493.2021029
    Abstract567)      PDF (3021KB)(679)       Save
    Based on detailed geological investigation, this paper investigated the whole-rock element geochemistry, zircon U-Pb dating and chlorite mineral chemistry of Xinmegnshan dacite porphyry in Changning City, Hunan Province. With reference to previous research, we discussed petrochemical characteristics, magmatic age, magma sources, as well as relationship with mineralization in Shuikoushan orefield. LA-ICP-MS zircon U-Pb isotopic analyses showed that Xinmegnshan dacite porphyry erupted during the Late Jurassic, with a weighted mean 206Pb/238U age of 152.9±1.2 Ma (MSWD=0.27, 2σ, N=17). Xinmegnshan dacite porphyry was rich in Light Rare Earth Elements (LREEs) and Rb, Th, U, La, Pb, Nd, Zr, Hf, while depleted in Heavy Rare Earth Elements (HREEs) and Nb, Ta, Ba, Sr, P, showing crust-derived affinities, and might be contaminated by mantle material. Chlorite was mainly clinochlore with alteration temperature of 280℃ , which was similar to that of the Cu-Mo mineralization in this orefield. During Late Jurassic, the tectonic extension and thinning of the continental lithosphere in the study area induced partial melting of the crust, and produced granitic magma, which might mix with a small amount of mantle material. The magma then invaded along deep faults and formed Xinmegnshan dacite porphyry. At the late stage of magma crystallization, as Cu-Mo precipitation, the hydrothermal fluid replaced the dacite porphyry continuously and resulted in widespread chloritization.

    Related Articles | Metrics
    Coral Reef Geomorphology of Daoming Reefs in Nansha Islands
    HU Xindi, ZHANG Yongzhan
    Geological Journal of China Universities    2021, 27 (4): 469-479.   DOI: 10.16108/j.issn1006-7493.2020033
    Abstract506)      PDF (3035KB)(670)       Save
    Coral reefs support one of the ecosystems responding to global climate change most rapidly, and part characteristic geomorphology of coral reefs is significant proxy to determine the sea level change. Currently, most of the published results are mainly based on qualitative researches, no matter the research on the modern geomorphology or the buried palaeogeomorphology of coral reefs, quantitative research is relatively scarce. Based on the analyses of shallow seismic profile data collected at Daoming Reefs (DR) in the northern area of the Nansha Islands from August to September in 2017 combined with high resolution Google Earth images, DR is a typical atoll with an island, four cays, seven drying reefs and several submerged reefs now. It could be seen that the form ratic of DR is 0.11, the compactness is approximately 0.52 with the ductility of 4.20, while the development index of reef flat is 0.30. It is obviously that DR is still a semi-open to quasi-enclosed atoll, still in the early development stage of reefs. The zoning of the underwater geomorphic units of DR indicates that its reef structure follows the Darwin’s atoll theory of ‘Upper Truncated Cone’. Furthermore, taking the erosion interfaces and various typical seismic facies buried under the reef flat and lagoon of DR into account, the features of its modern geomorphology and buried palaeogeomorphology of DR could be revealed. It also indicates that there are several stages of its geomorphologic evolution, including three main developing phases and two stagnated phases, While sea level rose in the postglacial period, it has two relatively stable phases at the water depth of 80-90 m and 50 - 60 m. The modern coral reef in DR began to grow in the early Holocene and developed continuously till now. To collect  the core samples at its out slope, reef flat and lagoon in DR, it would be helpful to set up the reliable chronology scale and the local curve of sea level rising, which would be important to reveal the geomorphologic evolution of the coral reefs in northern area of the Nansha Islands and its responses to sea level changes since the postglacial period further.

    Related Articles | Metrics
    One-stop Sharing and Service System for Geoscience Knowledge Graph
    ZHU Yunqiang, DAI Xiaoliang, YANG Jie, WANG Shu, SUN Kai, QIU Qinjun, LI Weirong, QI Yanmin, HU Lei, LYU Hairong, WANG Xinbing, ZHOU Chenghu
    Geological Journal of China Universities    2023, 29 (3): 325-336.   DOI: 10.16108/j.issn1006-7493.2023029
    Abstract1232)      PDF (7167KB)(641)       Save
    As the most effective way of knowledge organization and service at present, knowledge graph has become the cornerstone of artificial intelligence and has been widely used in semantic search, machine translation, information recommendation and so on. In the era of big data, there is an urgent need of Geoscience knowledge graphs for integrating, mining and analysis of scattered, multi-source and heterogeneous Geo-data and its unknown knowledge intelligent discovery. To promote the construction and application of Geoscience knowledge graphs, the Deep-time Digital Earth (DDE) International Big Science Program has taken knowledge graph as its one of the core research contents since its launch in 2019. After more than three years of construction, DDE has built a large number of Geoscience knowledge graphs, and it strong needs one-stop sharing and service system of these knowledge graphs. Firstly, this paper introduces the content framework, composition as well as characteristics of the DDE knowledge graphs. On this basis, the design of the one-stop sharing and service system for the Geoscience knowledge graph is designed that include the design of the system functional and technical architecture. Finally, the development and operation environment & tools, and key technologies of the system are discussed in detail. The practice has proved that the system can effectively realize the one-stop sharing and open access of DDE knowledge graphs. Meanwhile, it sets an example for other fields or domains’ knowledge graph integrating and sharing systems.
    Related Articles | Metrics
    Experimental Investigation of Microbial Induced Calcite Precipitation (MICP) Improvement on Freeze-Thaw Resistance of Sandstone with Various Types of Porosity
    PAN Xiaohua, TANG Chaosheng, SHI Bin
    Geological Journal of China Universities    2021, 27 (6): 723-730.   DOI: 10.16108/j.issn1006-7493.2020110
    Abstract426)      PDF (2219KB)(623)       Save
    Sandstone is the most common rock type for geological relic and historic stone. Lithologic deterioration induced by freeze-thaw is the dominant reason that cause sandstone geological disaster. Permeability reduction and physico-mechanical property improvement is an effective way to solve this problem. In this study, the feasibility using Microbial Induced Calcite Precipitation (MICP) to improve the freeze-thaw resistance of sandstone with various types of porosity was studied as well as its mechanism was analyzed. MICP treatment and freeze-thaw test were carried out based on two types of sandstone with mediumgrain size and fine-grain size. Experimental results indicate that (1) MICP treatment could improve the freeze-thaw resistance of the two types of sandstone, which is contribute to the production of the CaCO3 crystals during the MICP process. These CaCO crystals occupy the porosity and reduce the volume of pore water and damaging force as well as enhance the bonding of the stone particles. However, MICP improvement performance is affected the effect of porosity. (2) After 40 cycles of freeze-thaw test, apparent damages at angular position were only observed from the samples without MICP treatment compared to the samples with MICP treatment. (3) The reduction rate of porosity of sandstone with medium-grain size and fine-grain size were reduced to 4.4% and 6.3% from 17.0% and 14.8% due to the MICP improvement when subjected to 40 cycles of freeze-thaw test. The same phenomenon can also be observed from the mass loss rate, water absorption, the reduction rate of wave velocity, corresponding values are 0.04% and 0.02% from 0.22% and 0.14%, 0.75% and 1.5% from 6.8% and 4.4%, 7.3% and 3.8% from 18.5% and 12.4%. (4) The efficiency of MICP process, effective treatment depth, distance of pore near surface of sandstone with mediumgrain size were higher because that its pores are larger, inducing higher values of the reduction rate of porosity and water absorption, growth rate of mass and wave velocity.

    Related Articles | Metrics
    Regional Background and Tectonic Evolution of Dingyuan Sag
    ZHAN Run, DING Hai, ZHANG Wenyong, SUN Gui, SUI Fengtang, XIN Yongchao
    Geological Journal of China Universities    2022, 28 (1): 86-95.   DOI: 10.16108/j.issn1006-7493.2020062
    Abstract270)      PDF (6050KB)(622)       Save
    Tectonic evolution and its origin of the upper Paleozoic in the Dingyuan Sag are essential for the evaluation of coal resources and exploration targets of unconventional natural gas. Based on the latest geophysical and drilling data, combined with results from previous studies, we discussed the tectonic evolution and its origin in detail via structural analysis and regional comparison. Results show that the upper Paleozoic coal-bearing strata are comparable to the middle segment of the Huainan coalfield, which show an anticline pattern. The Dingyuan Sag has been affected by the strike-slip activities of the Tan-Lu Fault Zone and uplift of the Dabie Orogenic Belt from the Mesozoic to Cenozoic. The tectonic evolution in the Dingyuan Sag can be divided into six main stages, including foreland deformation in the Indosinian (T3), relative uplift in the early-middle Jurassic (J1+2), reformation by strike-slip activities of the Tan-Lu fault zone from the late Jurassic (J3) to early Cretaceous, reformation by extension activity from the early Cretaceous (K1) to Paleogene (E), inversion by compression activity in the late Paleogene, and depression with uniform deposition from the Neogene to Quaternary (N-Q).
    Related Articles | Metrics
    Tectonic Evolution from Permian to Cretaceous in Western Guangxi and Its Relation with Sedimentary Bauxite
    XU Jianqi, CHEN Youbin, PANG Baocheng, LI Xuesen, CHEN Tao, LIU Wang, YIN Benchun, LI Jialong, ZHOU Yequan, LU Guanghui, XU Haipeng, LIAN Lvxing, WANG Ze
    Geological Journal of China Universities    2021, 27 (4): 422-431.   DOI: 10.16108/j.issn1006-7493.2021024
    Abstract314)      PDF (3740KB)(609)       Save
    Western Guangxi, one of the most important source of bauxite ore deposit in China, is located in the Youjiang Basin, which is on the Yangtze Block of the South China Plate. In order to figure out the response of sedimentary bauxite to tectonic evolution from Late Paleozoic to Early Mesozoic in this area and to study about the influence on the ore forming process of bauxite deposit, the structure information that recorded by the bauxite ore deposit and the stratigraphic lithology in surrounding areas was analyzed from the perspective of ore geological characteristics and stratigraphy. The results show that the mineralization and transformation of sedimentary bauxite ore in western Guangxi is accompanied by regional tectonic movements. It provides favorable conditions for mineralization of bauxite ore deposit by crustal uplift and volcanic eruptions during the Dongwu Movement. Under the tectonic background settings of intracontinental deformation and compression during the Indosinian and Yanshanian movement in the South China Plate, the sedimentary bauxite was transformed, manifested as the shape changing and  the spatial displacement of ore bodies.
    Related Articles | Metrics
    Research Progress of Geochemistry in Tungsten Deposit: Based on the Wolframite U-Pb, Sm-Nd, Lu-Hf Isotope Geochronlogy and Trace Element Characterics
    YANG Ming, WANG Hao , WU Shitou, YANG Yueheng
    Geological Journal of China Universities    2021, 27 (3): 250-263.   DOI: 10.16108/j.issn1006-7493.2021030
    Abstract503)      PDF (1506KB)(605)       Save
    Wolframite occurs as one of the main ore minerals in tungsten deposit. It is more effective to directly date wolframite to represent its mineralization age. Since it usually contains a certain amount of U and some samples exhibit high Sm/Nd ratios, thus, wolframite U-Pb and Sm-Nd dating methods have been applied to the metallogenic chronology study of various wolframite deposits. However, wolframite U-Pb and Sm-Nd dating methods have their own limitations, so the dating is commonly unsuccessful or the results are not ideal. In this paper, we systematically reviewed and analysed the development of wolframite U-Pb and Sm-Nd dating methods, and discussed the challenges and opportunities of wolframite U-Pb and Sm-Nd chronology. Meanwhile, we also evaluated the application prospect of wolframite Lu-Hf chronology in the light of the published Lu and Hf data of wolframite. It has been shown that the Lu/Hf ratio in wolframite has a large variation range and that Lu-Hf dating method is of great potential. This paper discussed the existing problems and possible solutions of wolframite geochronology in defining the mineralization age of tungsten deposit, in order to promote the development of wolframite geochronology in the future.

    Related Articles | Metrics
    Application of Transmission Electron Microscopy in Microarea Analysis in Mineral
    CHEN Jiani
    Geological Journal of China Universities    2021, 27 (3): 356-365.   DOI: 10.16108/j.issn1006-7493.2021037
    Abstract673)      PDF (4076KB)(603)       Save
    Transmission electron microscope (TEM) is an important characterization method in nano-geology field which is a branch of modern earth science. TEM offers images with an ultra-high spatial resolution and diversified microanalysis methods. Because of the high complexity and strong heterogeneity of geological samples, the experimental process is complex and difficult when using TEM to analyze and study geological specimens. In this paper, aims to explore a scientific and appropriate testing scheme, the author pays attention to describe every test step. Firstly, according to the characteristics of samples, the appropriate sample preparation methods should be selected and the powder preparation method, ion thinning method and focused ion beam method are introduced. Then, the target minerals are searched, and a search method of SEM+TEM is proposed.Next, different kinds of images are acquired, including bright field image, dark field image, high resolution image, electron diffraction pattern and so on, each theory, process, notices and experimental skills are related and analyzed in detail. Finally, the micro area concerned is selected to test the elements composition and distribution, and commonly used micro area elements composition analysis instruments are compared to illustrate the advantages and the scope of TEM elements analysis.
    Related Articles | Metrics
    Progress of Methods for Assessing CO 2 Mineralization Storage Potential in Basalt
    GAO Zhihao, XIA Changyou, LIAO Songlin, YU Xiaojie, LIU Muxin, LI Pengchun, LIANG Xi, DAI Qing, HUANG Xinwo
    Geological Journal of China Universities    2023, 29 (1): 66-75.   DOI: 10.16108/j.issn1006-7493.2022099
    Abstract2037)      PDF (1109KB)(603)       Save
    CO 2 geological storage is an important technology to reduce CO 2 emissions, which can safely store CO 2 in geological formations for millions of years. Conventional CO 2 storage reservoirs include deep saline aquifers and depleted oil and gas reservoirs. Basalt is a new type of CO 2 storage reservoir that has been attracting attention in recent years. CO 2 storage in basalt would increase the technical method and potential of CO 2 geological storage. Storage potential assessment is one of the fundamental works of CO 2 geological storage study. This paper systematically examines the current methods for assessing the storage potential of CO 2 in basaltic rocks, and analyzes the principles and application scenarios of various methods. Then, the study takes the basalt of Icelandic Active Rift zone as an example to compare each of the methods. The study suggests that the current CO 2 mineralization storage potential assessment methods generally include three categories: ① Unit rock storage potential assessment method, which evaluates carbon sequestration potential based on the reaction volume or area of rocks; ② Mineral replacement storage potential assessment method: based on the volume of minerals that can react with CO 2 in basalts. ③Pore filling storage potential assessment method, which evaluates the proportion of secondary minerals that can fill reservoirs’ pore space after CO 2 mineralization. The authors note that the first method requires special experimental analysis, making it more challenging, the second method is more appropriat for basalts with high porosity and low reactive mineral content, while the third method is more suitable for basqlts with low porosity and high reactive mineral content.
    Related Articles | Metrics
    Status and Advances of Research on Caprock Sealing Properties of CO 2 Geological Storage
    CHEN Bowen, WANG Rui, LI Qi, ZHOU Yinbang, TAN Yongsheng, DAI Quanqi, ZHANG Yao
    Geological Journal of China Universities    2023, 29 (1): 85-99.   DOI: 10.16108/j.issn1006-7493.2023010
    Abstract1552)      PDF (6425KB)(603)       Save
    CO 2 Geological storage is one of the key technologies to address global climate changes and reduce greenhouse gas emissions. Large-scale CO 2 injection into the formation is prone to inducing CO 2 leakage problem. In particular, the leakage problem of CO 2 through caprock includes capillary leakage, hydraulic fracture and leakage along pre-existing faults crossing caprock. Therefore, evaluation of caprock seal is crucial for prediction of long-term safety and stability of CO 2 geological storage. This paper provides an overview of the current status of research on sealing mechanisms, influencing factors, and damage modes affecting caprock seal of CO 2 geological storage. It is concluded that caprock seal mechanisms include capillary seal, hydraulic seal, and overpressure seal. The main influencing factors of caprock seal characteristics include caprock lithology, mudrock-sand ratio, caprock mechanical properties, and sequestration pressure. Then, the damage modes of caprock seal during CO 2 injection are illustrated, and some insight into the shortcoming of caprock seal is provided.
    Related Articles | Metrics
    Geochemical Characteristics and Genesis of Geothermal Fluids in Zhefang Jade Pool (hot spring) Sedimentary Rock Area on the Eastern#br# Side of the Longling-Ruili Fault, West Yunnan
    ZHANG Qidao
    Geological Journal of China Universities    2021, 27 (4): 489-500.   DOI: 10.16108/j.issn1006-7493.2020011
    Abstract397)      PDF (1669KB)(599)       Save
    The Zhefang Basin in Mang City of Yunnan Province is located in the middle-south section of the Sanjiang orogenic belt. There are many faults, strong magmatism and abundant geothermal resources in this area, but research on these different aspects of this area is low at present. In this study, a geological, geophysical, hydrogeological and hydrogeochemical investigation was carried out in the sedimentary rock area on the eastern side of the Longling-Ruili Fault. Water samples were collected and subjected to hydrochemical analysis, stable isotope measurements, and quantitative calculations. The silicon-enthalpy equation method and the silicon-enthalpy diagram method were used to quantitatively evaluate the cold-water mixing ratio in hot spring water, and to estimate hot water recharge elevation, recharge zone temperature, thermal storage temperature, cycle depth, and natural heat release of the hot spring. The calculated δ13CCO2 value of CO2 is -16.56‰. The sources of CO 2 involved in water-rock reaction are a mixture of both mantle and soil. Moreover, the water-rock reaction is mainly reflected as CO 2 entering the reservoir and the surrounding rock to produce HCO 3-. The genetic type of groundwater hydrochemical components is mainly constrained by rock weathering type. The chemical characteristics of geothermal fluid, the state of occurrence of geothermal resources, the mechanism of thermal cycle and the source of heat source in Zhefang jade pool were further identified. The formation and evolution of geothermal water in the study area were analyzed. The research results provide new support for geothermal research in Zhefang area and important guidance for the sustainable development and protection of tourism resources in the jade pool.

    Related Articles | Metrics
    Paleomagnetism of Permian-Lower Triassic Strata in the Southern Longmenshan Fold-Thrust Belt
    LI Wei, JIA Dong, ZHANG Yong, LI Yongxiang, ZHONG Cheng, GE Jiacheng
    Geological Journal of China Universities    2022, 28 (1): 119-128.   DOI: 10.16108/j.issn1006-7493.2020066
    Abstract383)      PDF (2378KB)(592)       Save
    In order to study and constrain the tectonic movement characteristics of the southern Longmenshan fold-thrust belt, the paleomagnetic study was carried out on the light purple gray mudstone and siltstone of the lower Triassic Feixianguan formation near Dachuan town and the Permian limestone in Baoxing in the southern Longmenshan fold-thrust belt. Paleomagnetic samples were collected from 10 sampling sites, of which 3 are Permian limestone and 7 are light purple gray mudstone and siltstone of Feixianguan Formation. We have conducted the experiments of stepwise thermal demagnetization, rock magnetism (isothermal remanent magnetization acquisition curves and triaxial isothermal remanent thermal demagnetization) and scanning electron microscope. Based on the stepwise thermal demagnetization experiments of 80 samples, we revealed a stable characteristic remanence from the Feixianguan Formation samples but not from the Permian limestone samples. The high temperature components pass simple generalized fold test, the tilt-corrected mean direction of the characteristic remanence is:Ds=36.9°, Is=16.5°,α95=5.9°, K=33.8, N=18 and the corresponding paleomagnetic pole position plots close to the Early Triassic mean pole of the apparent polar wander path for the south China Block. The results of rock magnetic show that the major magnetic mineral of Feixianguan formation is magnetite, and the scanning electron microscope observation shows that it is clastic iron oxide, and there is no obvious post diagenetic authigenic characteristics. Combined with the characteristics of demagnetization curve, scanning electron microscope, paleomagnetic pole position of characteristic remanence and rock magnetic results, the characteristic remanence of Feixianguan formation is likely to be primary remanence. The results show that there is no obvious relative tectonic rotation between the Longmenshan fold-thrust belt and Sichuan Basin. Since the Late Triassic, the northern and southern Longmenshan fold-thrust belt and Sichuan Basin are unified tectonic units in dynamics.

    Related Articles | Metrics
    A Sedimentary Record of Environmental and Paleoclimatic Changes in the North Shore of Hangzhou Bay since the Pleistocene
    LIN Zhongyang, LIU Jian, JIN Xianglong, WU Ming, ZHAO Xudong, PAN Shaojun
    Geological Journal of China Universities    2022, 28 (1): 129-139.   DOI: 10.16108/j.issn1006-7493.2020035
    Abstract1319)      PDF (3524KB)(592)       Save
    The BZK04 borehole (237.80 m deep) is located in the south wing of the Yangtze River Delta and the north bank of Hangzhou Bay. The core contains a relatively complete and continuous sedimentary sequence since the Pleistocene. In this study, the sediment lithology, micropaleontology, sporopollen assemblage, particle size content, paleomagnetism and OSL dating of the core were analyzed comprehensively, the characteristics of depositional environment evolution and paleoclimatology changes since the Pleistocene in the research area were discussed, and the framework of quaternary multiple stratigraphic divisions and correlatiosn was established. The results show that from bottom to top, the BZK04 core can be divided into carbonaceous mudstone (Ech) of the Changhe Formation, and the Jiaxing Formation(N-Qp1j), Qiangang Formation( Qp2q), Dongpu Formation( Qp3d), Ningbo Formation (Qp3n) and Zhenhai Formation (Qhzh) since the early Pleistocene epoch; Foraminifera of 17 species in 11 genera were identified , including 16 benthonic foraminifera and 1 planktonic foraminifera; The ostracod of 8 species in 8 genera was identified ; Pollen analysis reveals that there were 37 types of pollen, including 18 woody plant pollen, 11 herbaceous pollen, and 8 fern spore; The content of woody plants was the highest in the palynological assemblage (85.1%), followed by fern spores (8.7%) and herb pollen (6.3%). According to the comprehensive analysis of the sedimentary environment of borehole by lithologic stratification features, sedimentary facies, sporopollen, foraminifera and ostracodes, and grain size distribution frequency curve, the depositional environmental record is characterized by 18 pollen assemblages and 7 paleoclimatic cyclic changes, among which the early Pleistocene is dominated by fluvial and lacustrine facies deposits, indicating two paleoclimatic cycles from the third warm period to the fourth cold period; The middle Pleistocene was dominated by fluvial facies, lacustrine facies, and fluvial and lacustrine facies, revealing two paleoclimatic cycles from the fifth warm period to the sixth cold period; The late Pleistocene is dominated by the tidal-flat facies, estuarine facies and neritic facies, corresponding to two paleoclimatic cycles from the seventh warm period to the eighth cold period; In the Holocene, there were tidal-flat facies, fluvial and lacustrine facies, corresponding to the Atlantic and boreal periods. This study provides an important basis for further understanding the changes in quaternary sedimentary environment, the stratigraphic divisions and the paleoclimate evolution since the Pleistocene in the southern side of the Yangtze River Delta.

    Related Articles | Metrics
    Mechanism of Poly-phosphates Sorption by Boehmite: A 31P Solid-state NMR Study
    LI Yongfang, REN Chao, ZHOU Qiang, LI Wei
    Geological Journal of China Universities    2021, 27 (4): 385-393.   DOI: 10.16108/j.issn1006-7493.2020012
    Abstract476)      PDF (2121KB)(568)       Save
    Poly-Phosphate (Poly-P) is a group of very important inorganic phosphates, which exists widely in natural systems. Studying of the transport and transformation of Poly-P is critically essential to understand the biogeochemical cycling of phosphorus. Sorption reactions at mineral-solution interface control the transport and transformation of elements. In this research, the widely distributed hydrated alumina, Boehmite, was selected as the adsorbent to explore the behavior and mechanism of Poly-P sorption, as a function of initial P concentration and pH. Under the experimental conditions, the amounts of the sorbed Poly-P increase with P
    concentration, whereas decrease with increasing pH. To further understand the mechanisms, we adopted several technologies, such as XRD, SEM and 31P solid-state NMR to characterize our samples. The results of 31P solid-state NMR indicate the occurrence of both adsorption and hydrolysis. The P-O-P bond in the middle of the long chain was randomly broken, generating short-chain Poly-P and orthophosphate, both of which were adsorbed as inner-sphere complexes on the surface of Boehmite.

    Related Articles | Metrics
    LA-ICP-MS Zircon U-Pb Dating and Hf Isotopic Composition of Dacite in Hezhou, Northeastern Guangxi
    WANG Yongqiang, SHI Yu, LI Xiang, LIU Xijun, TANG Yuanlan, SUN Yirong
    Geological Journal of China Universities    2022, 28 (2): 141-152.   DOI: 10.16108/j.issn1006-7493.2021027
    Abstract491)      PDF (3932KB)(565)       Save
    The study area is located at the junction of Hunan and Guangxi in the western part of Nanling metallogenic belt, where Mesozoic magmatic activity is frequent and the diagenesis and mineralization are remarkable, especially during Yanshanian. In order to determine the formation age of kongzimiao dacite in Kaishan Town, Hezhou, northeastern Guangxi, and to discuss its source property, LA-ICP-MS zircon U-Pb dating and Lu-Hf isotope are obtained. zircon U-Pb age of 157.1±0.9 Ma displayed the formation age of the dacite. Zircons grains have a wide range of isotopic composition (εHf(t) values rang from -5.68 to -0.97), with corresponding two-stage Hf isotope model age (TDM2) varying from 1.26~1.54 Ga, suggesting that the protolith was predominantly derived from the crystalline basement crust in Mesoproterozoic, and may be accompanied by a small amount of mantle-derived materials. Combined with the previous studies on the Yanshanian diagenesis and mineralization in South China, it is considered that the dacite in the study area and the early Yanshanian rocks and deposits in Northeast Guangxi are the products of the first large-scale magmatic activity in the Yanshanian in South China, and the formation of dacite may be related to the intraplate extension thinning of the Yanshanian lithosphere in South China.

    Related Articles | Metrics
    Discussion on Geological Characteristics and Landscaping Mechanism of Gemstone Cave in Fumin County, Central Yunnan
    ZHOU Yuguo, ZHANG Fan, ZHOU Kun, ZHOU Chensu, WANG Yuchao, WANG Jian, FAN Kai
    Geological Journal of China Universities    2021, 27 (4): 480-488.   DOI: 10.16108/j.issn1006-7493.2020054
    Abstract422)      PDF (1732KB)(546)       Save
    The karst underground river cave landscape system in Gemstone Cave, Fumin County, Central Yunnan Province is moderate in scale with various karst landscapes in the cave, treasures (agates) in the cave, beautiful ecological environment, multiethnic religious culture and potential hot spring resources outside the cave and superior traffic location which makes the tourism elements cluster with high development value. According to the regional geological background of Gemstone Cave, this paper analyzes the evolution characteristics of regional geological history, summarizes the tourism geological characteristics of Gemstone Cave according to the field exploration results of Gemstone Cave, discusses the landscape mechanism of Gemstone Cave from five aspects: lithology, structure, hydrogeology, paleogeography and landscape age, points out that multiple faults (fracture zones) jointly control the spatial pattern of Gemstone Cave landscape. Karst started in the late Yanshan period and the Himalayan period was the main landscape period of the karst underground river cave system in Gemstone Cave. The origin of the gem (agate) produced in Gemstone Cave was preliminarily inferred and explained.

    Related Articles | Metrics
    High Precision Analysis of Chemical Composition of SPI Monazite Standard on Large Spectrometer of 140 mm Rowland Circle
    HU Huan, WANG Rucheng, XIE Lei, ZHANG Wenlan, TIAN Enrong, XU Yating, FAN Hongrui
    Geological Journal of China Universities    2021, 27 (3): 317-326.   DOI: 10.16108/j.issn1006-7493.2021036
    Abstract361)      PDF (1551KB)(542)       Save
    Monazite is the bearing-LREE (light rare earth elements) phosphate mineral that occurs all types of rocks. It is an essential mineral for understanding the formation processes and U-Pb dating, thus high precision analysis of monazite chemical composition has an important geological significance, and also provides reliable parameters for follow-up studies, such as EMPA CHIME dating and in-situ isotopic microanalysis. EMPA is an in-situ and non-destructive technique with an excellent spatial resolution (~1 μm). Due to that, based on the detailed wavelength scanning for SPI Monazite standard, we focus on discussing the important issues in analytical procedure of monazite chemical composition: accelerate voltage, beam current, time, spectrometer, analysis lines, detected limits, interference factor and standards, and obtain the chemical composition data that are finely consistent with the recommended values of the SPI monazite standard under the optimal analysis conditions. This paper presents the best analytical set-up of JEOL JXA-8530F Plus electron microprobe facility at State key laboratory for mineral deposits research, Nanjing University, particularly establishes the high precision analysis of the trace rare earth elements on large spectrometer of 140 mm Rowland circle. The relative standard deviations (RSD) of all element contents are less than 20% (0.05%-17.75%)and meet the accuracy requirement of integration analysis of monazite composition and geochronology.

    Related Articles | Metrics